## Institut für Informatik und Computational Science

### Refine

#### Year of publication

#### Document Type

- Article (141)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)

#### Keywords

- Answer set programming (4)
- Answer Set Programming (3)
- answer set programming (3)
- Theory (2)
- Boolean logic models (1)
- Combinatorial multi-objective optimization (1)
- Complex optimization (1)
- Incremental answer set programming (1)
- Knowledge representation (1)
- Localization (1)
- Logic programming (1)
- Meta-Programming (1)
- Nonmonotonic reasoning (1)
- Preference Handling (1)
- Signaling transduction networks (1)
- Systems biology (1)
- Tracking (1)
- Wireless Sensor Networks (1)
- algorithm schedules (1)
- belief merging (1)
- belief revision (1)
- bioinformatics (1)
- consistency (1)
- course timetabling (1)
- declarative problem solving (1)
- diagnosis (1)
- educational timetabling (1)
- finite model computation (1)
- portfolio-based solving (1)
- program encodings (1)
- proof complexity (1)
- strong equivalence (1)
- tableau calculi (1)

#### Institute

In recent years, there has been a large amount of disparate work concerning the representation and reasoning with qualitative preferential information by means of approaches to nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations, and intuitions, it is difficult to compare or relate one approach with another. Here, we present an overview and classification for approaches to dealing with preference. A set of criteria for classifying approaches is given, followed by a set of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is subsequently given and classified with respect to these sets of underlying principles

We consider the problem of representing arbitrary preferences in causal reasoning and planning systems. In planning, a preference may be seen as a goal or constraint that is desirable, but not necessary, to satisfy. To begin, we define a very general query language for histories, or interleaved sequences of world states and actions. Based on this, we specify a second language in which preferences are defined. A single preference defines a binary relation on histories, indicating that one history is preferred to the other. From this, one can define global preference orderings on the set of histories, the maximal elements of which are the preferred histories. The approach is very general and flexible; thus it constitutes a base language in terms of which higher-level preferences may be defined. To this end, we investigate two fundamental types of preferences that we call choice and temporal preferences. We consider concrete strategies for these types of preferences and encode them in terms of our framework. We suggest how to express aggregates in the approach, allowing, e.g. the expression of a preference for histories with lowest total action costs. Last, our approach can be used to express other approaches and so serves as a common framework in which such approaches can be expressed and compared. We illustrate this by indicating how an approach due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3.

We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs.
We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision.
We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets.
Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism.

A polynomial translation of logic programs with nested expressions into disjunctive logic programs
(2002)

Algorithm selection (AS) techniques - which involve choosing from a set of algorithms the one expected to solve a given problem instance most efficiently - have substantially improved the state of the art in solving many prominent AI problems, such as SAT, CSP, ASP, MAXSAT and QBF. Although several AS procedures have been introduced, not too surprisingly, none of them dominates all others across all AS scenarios. Furthermore, these procedures have parameters whose optimal values vary across AS scenarios. This holds specifically for the machine learning techniques that form the core of current AS procedures, and for their hyperparameters. Therefore, to successfully apply AS to new problems, algorithms and benchmark sets, two questions need to be answered: (i) how to select an AS approach and (ii) how to set its parameters effectively. We address both of these problems simultaneously by using automated algorithm configuration. Specifically, we demonstrate that we can automatically configure claspfolio 2, which implements a large variety of different AS approaches and their respective parameters in a single, highly-parameterized algorithm framework. Our approach, dubbed AutoFolio, allows researchers and practitioners across a broad range of applications to exploit the combined power of many different AS methods. We demonstrate AutoFolio can significantly improve the performance of claspfolio 2 on 8 out of the 13 scenarios from the Algorithm Selection Library, leads to new state-of-the-art algorithm selectors for 7 of these scenarios, and matches state-of-the-art performance (statistically) on all other scenarios. Compared to the best single algorithm for each AS scenario, AutoFolio achieves average speedup factors between 1.3 and 15.4.

An Extended Query language for action languages (and its application to aggregates and preferences)
(2006)

We address the problem of Finite Model Computation (FMC) of first-order theories and show that FMC can efficiently and transparently be solved by taking advantage of a recent extension of Answer Set Programming (ASP), called incremental Answer Set Programming (iASP). The idea is to use the incremental parameter in iASP programs to account for the domain size of a model. The FMC problem is then successively addressed for increasing domain sizes until an answer set, representing a finite model of the original first-order theory, is found. We implemented a system based on the iASP solver iClingo and demonstrate its competitiveness by showing that it slightly outperforms the winner of the FNT division of CADE's 2009 Automated Theorem Proving (ATP) competition on the respective benchmark collection.

The course timetabling problem can be generally defined as the task of assigning a number of lectures to a limited set of timeslots and rooms, subject to a given set of hard and soft constraints. The modeling language for course timetabling is required to be expressive enough to specify a wide variety of soft constraints and objective functions. Furthermore, the resulting encoding is required to be extensible for capturing new constraints and for switching them between hard and soft, and to be flexible enough to deal with different formulations. In this paper, we propose to make effective use of ASP as a modeling language for course timetabling. We show that our ASP-based approach can naturally satisfy the above requirements, through an ASP encoding of the curriculum-based course timetabling problem proposed in the third track of the second international timetabling competition (ITC-2007). Our encoding is compact and human-readable, since each constraint is individually expressed by either one or two rules. Each hard constraint is expressed by using integrity constraints and aggregates of ASP. Each soft constraint S is expressed by rules in which the head is the form of penalty (S, V, C), and a violation V and its penalty cost C are detected and calculated respectively in the body. We carried out experiments on four different benchmark sets with five different formulations. We succeeded either in improving the bounds or producing the same bounds for many combinations of problem instances and formulations, compared with the previous best known bounds.

Antwortmengenprogrammierung
(2003)

We present the hybrid ASP solver clingcon, combining the simple modeling language and the high performance Boolean solving capacities of Answer Set Programming (ASP) with techniques for using non-Boolean constraints from the area of Constraint Programming (CP). The new clingcon system features an extended syntax supporting global constraints and optimize statements for constraint variables. The major technical innovation improves the interaction between ASP and CP solver through elaborated learning techniques based on irreducible inconsistent sets. A broad empirical evaluation shows that these techniques yield a performance improvement of an order of magnitude.

Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines.

Building biological models by inferring functional dependencies from experimental data is an important issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available approaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuristic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by appeal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several benefits over the existing heuristic algorithms. First, it is declarative and thus transparent for biological experts. Second, it is elaboration tolerant and thus allows for an easy exploration and incorporation of biological constraints. Third, it allows for exploring the entire space of possible models. Finally, our approach offers an excellent performance, matching existing, special-purpose systems.

Circumscribing inconsistency
(1997)

claspfolio 2
(2014)

Building on the award-winning, portfolio-based ASP solver claspfolio, we present claspfolio 2, a modular and open solver architecture that integrates several different portfolio-based algorithm selection approaches and techniques. The claspfolio 2 solver framework supports various feature generators, solver selection approaches, solver portfolios, as well as solver-schedule-based pre-solving techniques. The default configuration of claspfolio 2 relies on a light-weight version of the ASP solver clasp to generate static and dynamic instance features. The flexible open design of claspfolio 2 is a distinguishing factor even beyond ASP. As such, it provides a unique framework for comparing and combining existing portfolio-based algorithm selection approaches and techniques in a single, unified framework. Taking advantage of this, we conducted an extensive experimental study to assess the impact of different feature sets, selection approaches and base solver portfolios. In addition to gaining substantial insights into the utility of the various approaches and techniques, we identified a default configuration of claspfolio 2 that achieves substantial performance gains not only over clasp's default configuration and the earlier version of claspfolio, but also over manually tuned configurations of clasp.

Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications.

Compressions and extensions
(1998)

We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving. Moreover, our approach allows us to apply advanced solving techniques from the area of SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has demonstrated its competitiveness and versatility by winning first places at various solver contests.

We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.

Reiter's default logic is one of the best known and most studied of the approaches to nonmonotonic reasoning. Several variants of default logic have subsequently been proposed to give systems with properties differing from the original. In this paper, we examine the relationship between default logic and its major variants. We accomplish this by translating a default theory under a variant interpretation into a second default theory, under the original Reiter semantics, wherein the variant interpretation is respected. That is, in each case we show that, given an extension of a translated theory, one may extract an extension of the original variant default logic theory. We show how constrained, rational, justified, and cumulative default logic can be expressed in Reiter's default logic. As well, we show how Reiter's default logic can be expressed in rational default logic. From this, we suggest that any such variant can be similarly treated. Consequently, we provide a unification of default logics, showing how the original formulation of default logic may express its variants. Moreover, the translations clearly express the relationships between alternative approaches to default logic. The translations themselves are shown to generally have good properties. Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous, in that for any of these variants of default logic, we can exactly mimic the behaviour of a variant in standard default logic. As well, the translations lend insight into means of classifying the expressive power of default logic variants; specifically we suggest that the property of semi-monotonicity represents a division with respect to expressibility, whereas regularity and cumulativity do not

We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ ill graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics

The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one

Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and incomplete information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with Answer Set Programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation both in a simulated as well as in a real setting.

Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. However, manual identification of logic rules underlying the system being studied is in most cases out of reach. Therefore, automated inference of Boolean logical networks from experimental data is a fundamental question in this field. This paper addresses the problem consisting of learning from a prior knowledge network describing causal interactions and phosphorylation activities at a pseudo-steady state, Boolean logic models of immediate-early response in signaling transduction networks. The underlying optimization problem has been so far addressed through mathematical programming approaches and the use of dedicated genetic algorithms. In a recent work we have shown severe limitations of stochastic approaches in this domain and proposed to use Answer Set Programming (ASP), considering a simpler problem setting. Herein, we extend our previous work in order to consider more realistic biological conditions including numerical datasets, the presence of feedback-loops in the prior knowledge network and the necessity of multi-objective optimization. In order to cope with such extensions, we propose several discretization schemes and elaborate upon our previous ASP encoding. Towards real-world biological data, we evaluate the performance of our approach over in silico numerical datasets based on a real and large-scale prior knowledge network. The correctness of our encoding and discretization schemes are dealt with in Appendices A-B. (C) 2014 Elsevier B.V. All rights reserved.

Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms.

Answer set programming (ASP) does not allow for incrementally constructing answer sets or locally validating constructions like proofs by only looking at a part of the given program. In this article, we elaborate upon an alternative approach to ASP that allows for incremental constructions. Our approach draws its basic intuitions from the area of default logics. We investigate the feasibility of the concept of semi-monotonicity known from default logics as a basis of incrementality. On the one hand, every logic program has at least one answer set in our alternative setting, which moreover can be constructed incrementally based on generating rules. On the other hand, the approach may produce answer sets lacking characteristic properties of standard answer sets, such as being a model of the given program. We show how integrity constraints can be used to re-establish such properties, even up to correspondence with standard answer sets. Furthermore, we develop an SLD-like proof procedure for our incremental approach to ASP, which allows for query-oriented computations. Also, we provide a characterization of our definition of answer sets via a modification of Clarks completion. Based on this notion of program completion, we present an algorithm for computing the answer sets of a logic program in our approach.

We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp.

In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change