## Institut für Informatik und Computational Science

### Refine

#### Document Type

- Article (18)
- Doctoral Thesis (1)

#### Keywords

- Antwortmengenprogrammierung (1)
- Künstliche Intelligenz (1)
- Präferenzen (1)
- answer set programming (1)
- artificial intelligence (1)
- logic programming (1)
- logische Programmierung (1)
- preferences (1)
- priorities (1)

More on nomore
(2002)

More on nomore
(2002)

The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one

We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ ill graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics

Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm, having its roots in nonmonotonic reasoning, deductive databases, and logic programming with negation as failure. The basic idea of ASP is to represent a computational problem as a logic program whose answer sets correspond to solutions, and then to use an answer set solver for finding answer sets of the program. ASP is particularly suited for solving NP-complete search problems. Among these, we find applications to product configuration, diagnosis, and graph-theoretical problems, e.g. finding Hamiltonian cycles. On different lines of ASP research, many extensions of the basic formalism have been proposed. The most intensively studied one is the modelling of preferences in ASP. They constitute a natural and effective way of selecting preferred solutions among a plethora of solutions for a problem. For example, preferences have been successfully used for timetabling, auctioning, and product configuration. In this thesis, we concentrate on preferences within answer set programming. Among several formalisms and semantics for preference handling in ASP, we concentrate on ordered logic programs with the underlying D-, W-, and B-semantics. In this setting, preferences are defined among rules of a logic program. They select preferred answer sets among (standard) answer sets of the underlying logic program. Up to now, those preferred answer sets have been computed either via a compilation method or by meta-interpretation. Hence, the question comes up, whether and how preferences can be integrated into an existing ASP solver. To solve this question, we develop an operational graph-based framework for the computation of answer sets of logic programs. Then, we integrate preferences into this operational approach. We empirically observe that our integrative approach performs in most cases better than the compilation method or meta-interpretation. Another research issue in ASP are optimization methods that remove redundancies, as also found in database query optimizers. For these purposes, the rather recently suggested notion of strong equivalence for ASP can be used. If a program is strongly equivalent to a subprogram of itself, then one can always use the subprogram instead of the original program, a technique which serves as an effective optimization method. Up to now, strong equivalence has not been considered for logic programs with preferences. In this thesis, we tackle this issue and generalize the notion of strong equivalence to ordered logic programs. We give necessary and sufficient conditions for the strong equivalence of two ordered logic programs. Furthermore, we provide program transformations for ordered logic programs and show in how far preferences can be simplified. Finally, we present two new applications for preferences within answer set programming. First, we define new procedures for group decision making, which we apply to the problem of scheduling a group meeting. As a second new application, we reconstruct a linguistic problem appearing in German dialects within ASP. Regarding linguistic studies, there is an ongoing debate about how unique the rule systems of language are in human cognition. The reconstruction of grammatical regularities with tools from computer science has consequences for this debate: if grammars can be modelled this way, then they share core properties with other non-linguistic rule systems.