## 60J27 Continuous-time Markov processes on discrete state spaces

### Refine

#### Has Fulltext

- yes (4)

#### Document Type

- Preprint (4)

#### Language

- English (4)

#### Keywords

- Markov chain (2)
- molecular motor (2)
- time duality (2)
- Schrödinger problem (1)
- absorbing boundary (1)
- absorption (1)
- bridges of random walks (1)
- continuous time Markov chain (1)
- hitting times (1)
- integration by parts on path space (1)

#### Institute

In this work we study reciprocal classes of Markov walks on graphs. Given a continuous time reference Markov chain on a graph, its reciprocal class is the set of all probability measures which can be represented as a mixture of the bridges of the reference walks. We characterize reciprocal classes with two different approaches. With the first approach we found it as the set of solutions to duality formulae on path space, where the differential operators have the interpretation of the addition of infinitesimal random loops to the paths of the canonical process. With the second approach we look at short time asymptotics of bridges. Both approaches allow an explicit computation of reciprocal characteristics, which are divided into two families, the loop characteristics and the arc characteristics. They are those specific functionals of the generator of the reference chain which determine its reciprocal class. We look at the specific examples such as Cayley graphs, the hypercube and planar graphs. Finally we establish the first concentration of measure results for the bridges of a continuous time Markov chain based on the reciprocal characteristics.

Transport Molecules play a crucial role for cell viability. Amongst others, linear motors transport cargos along rope-like structures from one location of the cell to another in a stochastic fashion. Thereby each step of the motor, either forwards or backwards, bridges a fixed distance. While moving along the rope the motor can also detach and is lost. We give here a mathematical formalization of such dynamics as a random process which is an extension of Random Walks, to which we add an absorbing state to model the detachment of the motor from the rope. We derive particular properties of such processes that have not been available before. Our results include description of the maximal distance reached from the starting point and the position from which detachment takes place. Finally, we apply our theoretical results to a concrete established model of the transport molecule Kinesin V.

Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transport molecules and derive properties like the maximal run length and time. Furthermore we introduce permuted balance, which is a more flexible extension of the ordinary reversibility and introduce the notion of Time Duality, which compares certain passage times pathwise. We give a number of sufficient conditions for Time Duality based on the geometry of the transition graph. Both notions are closely related to properties of the killed Quasi-Random-Walk.

We say that (weak/strong) time duality holds for continuous time quasi-birth-and-death-processes if, starting from a fixed level, the first hitting time of the next upper level and the first hitting time of the next lower level have the same distribution. We present here a criterion for time duality in the case where transitions from one level to another have to pass through a given single state, the so-called bottleneck property. We also prove that a weaker form of reversibility called balanced under permutation is sufficient for the time duality to hold. We then discuss the general case.