60Gxx Stochastic processes
Refine
Has Fulltext
- yes (1)
Year of publication
- 2016 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Is part of the Bibliography
- yes (1)
Keywords
- (sub-) tropical Africa (1)
- (sub-) tropisches Afrika (1)
- Detektion multipler Übergänge (1)
- Plio-Pleistocene (1)
- Plio-Pleistozän (1)
- direct and indirect climate observations (1)
- direkte und indirekte Klimaobservablen (1)
- kernel-based Bayesian inference (1)
- kernel-basierte Bayes'sche Inferenz (1)
- multi-change point detection (1)
Institute
Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of the observations. Unraveling such transitions yields essential information for the understanding of the observed system’s intrinsic evolution and potential external influences. A precise detection of multiple changes is therefore of great importance for various research disciplines, such as environmental sciences, bioinformatics and economics. The primary purpose of the detection approach introduced in this thesis is the investigation of transitions underlying direct or indirect climate observations. In order to develop a diagnostic approach capable to capture such a variety of natural processes, the generic statistical features in terms of central tendency and dispersion are employed in the light of Bayesian inversion. In contrast to established Bayesian approaches to multiple changes, the generic approach proposed in this thesis is not formulated in the framework of specialized partition models of high dimensionality requiring prior specification, but as a robust kernel-based approach of low dimensionality employing least informative prior distributions.
First of all, a local Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of a single transition. The analysis of synthetic time series comprising changes of different observational evidence, data loss and outliers validates the performance, consistency and sensitivity of the inference algorithm. To systematically investigate time series for multiple changes, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the weighted kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. The detection approach is applied to environmental time series from the Nile river in Aswan and the weather station Tuscaloosa, Alabama comprising documented changes. The method’s performance confirms the approach as a powerful diagnostic tool to decipher multiple changes underlying direct climate observations.
Finally, the kernel-based Bayesian inference approach is used to investigate a set of complex terrigenous dust records interpreted as climate indicators of the African region of the Plio-Pleistocene period. A detailed inference unravels multiple transitions underlying the indirect climate observations, that are interpreted as conjoint changes. The identified conjoint changes coincide with established global climate events. In particular, the two-step transition associated to the establishment of the modern Walker-Circulation contributes to the current discussion about the influence of paleoclimate changes on the environmental conditions in tropical and subtropical Africa at around two million years ago.