Refine
Has Fulltext
- yes (1)
Year of publication
- 2024 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Is part of the Bibliography
- yes (1)
Keywords
- Diffraktion (1)
- Eigenspannung (1)
- Elektronenrückstreubeugung (1)
- In-situ Experimente (1)
- Inconel 718 (1)
- Laserstrahlschmelzen (1)
- Textur (1)
- additive Fertigung (1)
- additive manufacturing (1)
- diffraction (1)
Institute
Additive manufacturing (AM) processes enable the production of metal structures with exceptional design freedom, of which laser powder bed fusion (PBF-LB) is one of the most common. In this process, a laser melts a bed of loose feedstock powder particles layer-by-layer to build a structure with the desired geometry. During fabrication, the repeated melting and rapid, directional solidification create large temperature gradients that generate large thermal stress. This thermal stress can itself lead to cracking or delamination during fabrication. More often, large residual stresses remain in the final part as a footprint of the thermal stress. This residual stress can cause premature distortion or even failure of the part in service. Hence, knowledge of the residual stress field is critical for both process optimization and structural integrity.
Diffraction-based techniques allow the non-destructive characterization of the residual stress fields. However, such methods require a good knowledge of the material of interest, as certain assumptions must be made to accurately determine residual stress. First, the measured lattice plane spacings must be converted to lattice strains with the knowledge of a strain-free material state. Second, the measured lattice strains must be related to the macroscopic stress using Hooke's law, which requires knowledge of the stiffness of the material. Since most crystal structures exhibit anisotropic material behavior, the elastic behavior is specific to each lattice plane of the single crystal. Thus, the use of individual lattice planes in monochromatic diffraction residual stress analysis requires knowledge of the lattice plane-specific elastic properties. In addition, knowledge of the microstructure of the material is required for a reliable assessment of residual stress.
This work presents a toolbox for reliable diffraction-based residual stress analysis. This is presented for a nickel-based superalloy produced by PBF-LB. First, this work reviews the existing literature in the field of residual stress analysis of laser-based AM using diffraction-based techniques. Second, the elastic and plastic anisotropy of the nickel-based superalloy Inconel 718 produced by PBF-LB is studied using in situ energy dispersive synchrotron X-ray and neutron diffraction techniques. These experiments are complemented by ex situ material characterization techniques. These methods establish the relationship between the microstructure and texture of the material and its elastic and plastic anisotropy. Finally, surface, sub-surface, and bulk residual stress are determined using a texture-based approach. Uncertainties of different methods for obtaining stress-free reference values are discussed.
The tensile behavior in the as-built condition is shown to be controlled by texture and cellular sub-grain structure, while in the heat-treated condition the precipitation of strengthening phases and grain morphology dictate the behavior. In fact, the results of this thesis show that the diffraction elastic constants depend on the underlying microstructure, including texture and grain morphology. For columnar microstructures in both as-built and heat-treated conditions, the diffraction elastic constants are best described by the Reuss iso-stress model. Furthermore, the low accumulation of intergranular strains during deformation demonstrates the robustness of using the 311 reflection for the diffraction-based residual stress analysis with columnar textured microstructures. The differences between texture-based and quasi-isotropic approaches for the residual stress analysis are shown to be insignificant in the observed case. However, the analysis of the sub-surface residual stress distributions show, that different scanning strategies result in a change in the orientation of the residual stress tensor. Furthermore, the location of the critical sub-surface tensile residual stress is related to the surface roughness and the microstructure. Finally, recommendations are given for the diffraction-based determination and evaluation of residual stress in textured additively manufactured alloys.