Refine
Document Type
- Doctoral Thesis (11)
Is part of the Bibliography
- yes (11)
Keywords
- DNA origami (2)
- Beschallung (1)
- Biokompatibilität (1)
- Boden (1)
- Chemometrics (1)
- Chemometrie (1)
- Colloid Chemistry (1)
- DNA (1)
- DNA Origami (1)
- DNA Schädigung (1)
Institute
Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology:
1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems.
2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance.
Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids’ ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance.
Nanophotonics is the field of science and engineering aimed at studying the light-matter interactions on the nanoscale. One of the key aspects in studying such optics at the nanoscale is the ability to assemble the material components in a spatially controlled manner. In this work, DNA origami nanostructures were used to self-assemble dye molecules and DNA coated plasmonic nanoparticles. Optical properties of dye nanoarrays, where the dyes were arranged at distances where they can interact by Förster resonance energy transfer (FRET), were systematically studied according to the size and arrangement of the dyes using fluorescein (FAM) as the donor and cyanine 3 (Cy 3) as the acceptor. The optimized design, based on steady-state and time-resolved fluorometry, was utilized in developing a ratiometric pH sensor with pH-inert coumarin 343 (C343) as the donor and pH-sensitive FAM as the acceptor. This design was further applied in developing a ratiometric toxin sensor, where the donor C343 is unresponsive and FAM is responsive to thioacetamide (TAA) which is a well-known hepatotoxin. The results indicate that the sensitivity of the ratiometric sensor can be improved by simply arranging the dyes into a well-defined array. The ability to assemble multiple fluorophores without dye-dye aggregation also provides a strategy to amplify the signal measured from a fluorescent reporter, and was utilized here to develop a reporter for sensing oligonucleotides. By incorporating target capturing sequences and multiple fluorophores (ATTO 647N dye molecules), a reporter for microbead-based assay for non-amplified target oligonucleotide sensing was developed. Analysis of the assay using VideoScan, a fluorescence microscope-based technology capable of conducting multiplex analysis, showed the DNA origami nanostructure based reporter to have a lower limit of detection than a single stranded DNA reporter. Lastly, plasmonic nanostructures were assembled on DNA origami nanostructures as substrates to study interesting optical behaviors of molecules in the near-field. Specifically, DNA coated gold nanoparticles, silver nanoparticles, and gold nanorods, were placed on the DNA origami nanostructure aiming to study surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS) of molecules placed in the hotspot of coupled plasmonic structures.
Magnetotactic bacteria comprise a heterogeneous group of Gram negative bacteria which share the ability to synthesise intracellular magnetic nanoparticles surrounded by a lipid bilayer, known as magnetosomes, which are arranged in linear chains. The bacteria exert a unique level of control onto the biomineralization of these nanoparticles, which is seen in the controlled size and shape they have. These characteristics have attracted great attention on understanding the process by which the bacteria synthesise the magnetosomes. Moreover, the magnetosome chain impart the bacteria with a net magnetic dipole which makes them susceptible to interact with magnetic fields and thus orient with the Earth’s magnetic field. This feature has attracted as well much interest to understand how the swimming motility of these microorganisms is affected by the presence of magnetic fields. Most of the studies performed in these bacteria so far have been conducted in the traditional manner using large populations of cells. Such studies have the disadvantage of averaging many different individuals with heterogeneous behaviours and fail to consider individual variations. In addition, in large populations each bacterium will be subjected to a different microenvironment that will influence the bacterial behaviour, but which cannot be defined using these traditional methods. In this thesis, different microfluidic platforms are proposed to overcome these limitations and to offer the possibility to study magnetotactic bacteria in defined environments and down to a single-cell resolution. First, a sediment-like microfluidic platform is presented with the purpose of mimicking the porous environment they bacteria naturally dwell in. The platform allows to observe via transmitted light microscopy that bacterial navigation in crowded environments is enhanced by the Earth’s magnetic field strengths (B = 50 μT) rather than by null (B = 0 μT) or higher magnetic fields (B = 500 μT). Second, a microfluidic system to confine single-bacterial cells in physically defined environments is presented. The system allows to study via transmitted light microscopy the interplay between wall curvature, magnetic fields and bacterial speed affect the motion of a confined bacterium, and shows how bacterial trajectories depend on those three parameters. Third, a microfluidic platform to conduct semi in vivo magnetosome nucleation with a single-cell resolution via X-ray fluorescence is fabricated. It is shown that signal arising from magnetosome full chains can be observed individually in each bacterium. Finally, the iron uptake kinetics of a single bacterium are studied via a fluorescent reporter through confocal microscopy. Two different approaches are used for this: one of the previously mentioned platforms, as well as giant lipid vesicles. It is observed how iron uptake rates vary between cells, as well as how these rates are consistent with magnetosome formation taking place within some hours. The present thesis shows therefore how microfluidic technologies can be implemented for the study of magnetotactic bacteria at different degrees, and the level of resolution that can be attained by going into the single- cell scale.
Im Rahmen der vom Bundesministerium für Bildung und -forschung geförderten Forschungsinitiative „BonaRes – Boden als nachhaltige Ressource der Bioökonomie“ soll sich das Teilprojekt „I4S – integrated system for site-specific soil fertility management“ der Entwicklung eines integrierten Systems zum ortsspezifischen Management der Bodenfruchtbarkeit widmen. Hierfür ist eine Messplattform zur Bestimmung relevanter Bodeneigenschaften und der quantitativen Analyse ausgewählter Makro- und Mikronährstoffe geplant. In der ersten Phase dieses Projekts liegt das Hauptaugenmerk auf der Kalibrierung und Validierung der verschiedenen Sensoren auf die Matrix Boden, der Probennahme auf dem Acker und der Planung sowie dem Aufbau der Messplattform. Auf dieser Plattform sollen in der zweiten Phase des Projektes die verschiedenen Bodensensoren installiert, sowie Modelle und Entscheidungsalgorithmen zur Steuerung der Düngung und dementsprechend Verbesserung der Bodenfunktionen erstellt werden.
Ziel der vorliegenden Arbeit ist die Grundlagenuntersuchung und Entwicklung einer robusten Online-Analyse mittels Energie-dispersiver Röntgenfluoreszenzspektroskopie (EDRFA) zur Quantifizierung ausgewählter Makro- und Mikronährstoffe in Böden für eine kostengünstige und flächendeckende Kartierung von Ackerflächen. Für die Entwicklung eines Online-Verfahrens wurde ein dem Stand der Technik entsprechender Röntgenfluoreszenzmesskopf in Betrieb genommen und die dazugehörigen Geräteparameter auf die Matrix Boden optimiert. Die Bestimmung der analytischen Qualitäts-merkmale wie Präzision und Nachweisgrenzen fand für eine Auswahl an Nährelementen von Aluminium bis Zink statt. Um eine möglichst Matrix-angepasste Kalibrierung zu erhalten, wurde sowohl mit zertifizierten Referenzmaterialien (CRM), als auch mit Ackerböden kalibriert. Da einer der größten Nachteile der Röntgenfluoreszenzanalyse die Beeinflussung durch Matrixeffekte ist, wurde neben der klassischen univariaten Datenauswertung auch die chemometrische multivariate Methode der Partial Least Squares Regression (PLSR) eingesetzt. Die PLSR bietet dabei den Vorteil, Matrixeffekte auszugleichen, wodurch robustere Kalibriermodelle erhalten werden können. Zusätzlich wurde eine Hauptkomponentenanalyse (PCA) durchgeführt, um Gemeinsamkeiten und Ausreißer innerhalb des Probensets zu identifizieren. Es zeigte sich, dass eine Klassifizierung der Böden anhand ihrer Textur Sand, Schluff, Lehm und Ton möglich ist.
Aufbauend auf den Ergebnissen idealer Bodenproben (zu Tabletten gepresste luftgetrocknete Proben mit Korngrößen < 0,5 mm) wurde im Verlauf dieser Arbeit die Probenvorbereitung immer weiter reduziert und der Einfluss verschiedener Kenngrößen untersucht. Diese Einflussfaktoren können die Dichte und die Homogenität der Probe, sowie Korngrößeneffekte und die Feuchtigkeit sein. Anhand des RMSE (Wurzel der mittleren Fehlerquadratsumme) und unter Berücksichtigung der Residuen werden die jeweils erstellten Kalibriermodelle miteinander verglichen. Um die Güte der Modelle zu bewerten, wurden diese mit einem Testset validiert. Hierfür standen 662 Bodenproben von 15 verschiedenen Standorten in Deutschland zur Verfügung. Da die Ergebnisse an gepressten Tabletten für die Elemente Al, Si, K, Ca, Ti, Mn, Fe und Zn den Anforderungen für eine spätere Online-Analyse entsprechen, wurden im weiteren Verlauf dieser Arbeit Kalibriermodelle mit losen Bodenproben erstellt. Auch hier konnten gute Ergebnisse durch ausreichende Nachweisgrenzen und eine niedrige gemittelte Messabweichung bei der Vorhersage unbekannter Testproben erzielt werden. Es zeigte sich, dass die Vorhersagefähigkeit mit der multivariaten PLSR besser ist als mit der univariaten Datenauswertung, insbesondere für die Elemente Mn und Zn.
Der untersuchte Einfluss der Feuchtigkeit und der Korngrößen auf die Quantifizierung der Elementgehalte war vor allem bei leichteren Elementen deutlich zu sehen. Es konnte schließlich eine multivariate Kalibrierung unter Berücksichtigung dieser Faktoren für die Elemente Al bis Zn erstellt werden, so dass ein Einsatz an Böden auf dem Acker möglich sein sollte. Eine höhere Messunsicherheit muss dabei einkalkuliert werden. Für eine spätere Probennahme auf dem Feld wurde zudem der Unterschied zwischen statischen und dynamischen Messungen betrachtet, wobei sich zeigte, dass beide Varianten genutzt werden können. Zum Abschluss wurde der hier eingesetzte Sensor mit einem kommerziell erhältlichen Hand-Gerät auf sein Quantifizierungspotential hin verglichen. Der Sensor weist anhand seiner Ergebnisse ein großes Potential als Online-Sensor für die Messplattform auf. Die Ergebnisse unter Laborbedingungen zeigen, dass eine robuste Analyse Ackerböden unter Berücksichtigung der Einflussfaktoren möglich ist.
Synthesis and Characterization of Upconversion Nanaparticles for Applications in Life Sciences
(2021)
Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors leading to cell death and reduction of the tumor tissue. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEE) with the most probable energy around 10 eV through ionization of water molecules in the cells. A simulation of the dose distribution in the patient is required to optimize the irradiation modality in cancer radiation therapy, which must be based on the fundamental physical processes of high-energy radiation with the tissue. In the present work the accurate quantification of DNA radiation damage in the form of absolute cross sections for LEE-induced DNA strand breaks (SBs) between 5 and 20 eV is done by using the DNA origami technique. This method is based on the analysis of well-defined DNA target sequences attached to DNA origami triangles with atomic force microscopy (AFM) on the single molecule level. The present work focuses on poly-adenine sequences (5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16), and 5'- d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. Additionally, DNA double strand breaks from a DNA hairpin 5'-d(CAC)4T(Bt-dT)T2(GTG)4 are examined for the first time and are compared with those of DNA single strands 5'-d(CAC)4 and 5'- d(GTG)4. The irradiation is made in the most likely energy range of 5 to 20 eV with an anionic resonance maximum around 10 eV independently of the DNA sequence. There is a clear difference between σSSB and σDSB of DNA single and double strands, where the strand break for ssDNA are always higher in all electron energies compared to dsDNA by the factor 3. A further part of this work deals with the characterization and analysis of new types of radiosensitizers used in chemoradiotherapy, which selectively increases the DNA damage upon radiation. Fluorinated DNA sequences with 2'-fluoro-2'-deoxycytidine (dFC) show an increased sensitivity at 7 and 10 eV compared to the unmodified DNA sequences by an enhancement factor between 2.1 and 2.5. In addition, light-induced oxidative damage of 5'-d(GTG)4 and 5'-d((CAC)4T(Bt-dT)T2(GTG)4) modified DNA origami triangles by singlet oxygen 1O2 generated from three photoexcited DNA groove binders [ANT994], [ANT1083] and [Cr(ddpd)2][BF4]3 illuminated in different experiments with UV-Vis light at 430, 435 and 530 nm wavelength is demonstrated. The singlet oxygen induced generation of DNA damage could be detected in both aqueous and dry environments for [ANT1083] and [Cr(ddpd)2][BF4]3.
Gas hydrates are ice-like crystalline compounds made of water cavities that retain various types of guest molecules. Natural gas hydrates are CH4-rich but also contain higher hydrocarbons as well as CO2, H2S, etc. They are highly dependent of local pressure and temperature conditions. Considering the high energy content, natural gas hydrates are artificially dissociated for the production of methane gas. Besides, they may also dissociate in response to global warming. It is therefore crucial to investigate the hydrate nucleation and growth process at a molecular level. The understanding of how guest molecules in the hydrate cavities respond to warming climate or gas injection is also of great importance.
This thesis is concerned with a systematic investigation of simple and mixed gas hydrates at conditions relevant to the natural hydrate reservoir in Qilian Mountain permafrost, China. A high-pressure cell that integrated into the confocal Raman spectroscopy ensured a precise and continuous characterization of the hydrate phase during formation/dissociation/transformation processes with a high special and spectral resolution. By applying laboratory experiments, the formation of mixed gas hydrates containing other hydrocarbons besides methane was simulated in consideration of the effects from gas supply conditions and sediments. The results revealed a preferential enclathration of different guest molecules in hydrate cavities and further refute the common hypothesis of the coexistence of hydrate phases due to a changing feed gas phase. However, the presence of specific minerals and organic compounds in sediments may have significant impacts on the coexisting solid phases. With regard to the dissociation, the formation damage caused by fines mobilization and migration during hydrate decomposition was reported for the first time, illustrating the complex interactions between fine grains and hydrate particles. Gas hydrates, starting from simple CH4 hydrates to binary CH4—C3H8 hydrates and multi-component mixed hydrates were decomposed by thermal stimulation mimicking global warming. The mechanisms of guest substitution in hydrate structures were studied through the experimental data obtained from CH4—CO2, CH4—mixed gas hydrates and mixed gas hydrates—CO2 systems. For the first time, a second transformation behavior was documented during the transformation process from CH4 hydrates to CO2-rich mixed hydrates. Most of the crystals grew or maintained when exposed to CO2 gas while some others decreased in sizes and even disappeared over time. The highlight of the two last experimental simulations was to visualize and characterize the hydrate crystals which were at different structural transition stages. These experimental simulations enhanced our knowledge about the mixed gas hydrates in natural reservoirs and improved our capability to assess the response to global warming.
Membrane contact sites are of particular interest in the field of synthetic biology and biophysics. They are involved in a great variety of cellular functions. They form in between two cellular organelles or an organelle and the plasma membrane in order to establish a communication path for molecule transport or signal transmission.
The development of an artificial membrane system which can mimic membrane contact sites using bottom up synthetic biology was the goal of this research study. For this, a multi - compartmentalised giant unilamellar vesicle (GUV) system was created with the membrane of the outer vesicle mimicking the plasma membrane and the inner GUVs posing as cellular organelles.
In the following steps, three different strategies were used to achieve an internal membrane - membrane adhesion.
Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions.
This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems.
One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro.
In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery.
The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways.
This thesis deals with the synthesis of protein and composite protein-mineral microcapsules by the application of high-intensity ultrasound at the oil-water interface. While one system is stabilized by BSA molecules, the other system is stabilized by different nanoparticles modified with BSA. A comprehensive study of all synthesis stages as well as of resulting capsules were carried out and a plausible explanation of the capsule formation mechanism was proposed. During the formation of BSA microcapsules, the protein molecules adsorb firstly at the O/W interface and unfold there forming an interfacial network stabilized by hydrophobic interactions and hydrogen bonds between neighboring molecules. Simultaneously, the ultrasonic treatment causes the cross-linking of the BSA molecules via the formation of intermolecular disulfide bonds. In this thesis, the experimental evidences of ultrasonically induced cross-linking of the BSA in the shells of protein-based microcapsules are demonstrated. Therefore, the concept proposed many years ago by Suslick and co-workers is confirmed by experimental evidences for the first time. Moreover, a consistent mechanism for the formation of intermolecular disulfide bonds in capsule shells is proposed that is based on the redistribution of thiol and disulfide groups in BSA under the action of high-energy ultrasound. The formation of composite protein-mineral microcapsules loaded with three different oils and shells composed of nanoparticles was also successful. The nature of the loaded oil and the type of nanoparticles in the shell, had influence on size and shape of the microcapsules. The examination of the composite capsule revealed that the BSA molecules adsorbed on the nanoparticles surface in the capsule shell are not cross-linked by intermolecular disulfide bonds. Instead, a Pickering emulsion formation takes place. The surface modification of composite microcapsules through both pre-modification of main components and also the post-modification of the surface of ready composite microcapsules was successfully demonstrated. Additionally, the mechanical properties of protein and composite protein-mineral microcapsules were compared. The results showed that the protein microcapsules are more resistant to elastic deformation.