Refine
Document Type
- Doctoral Thesis (5)
Is part of the Bibliography
- yes (5)
Keywords
- Protein-Polymer-Konjugat (2)
- African medicinal plants (1)
- Afrikanische Heilpflanzen (1)
- Analytische Ultrazentrifugation (1)
- Bindung (1)
- Biohybrid-Membran (1)
- CBM (1)
- Cellulose-Bindung (1)
- Eisen (1)
- Hepcidin (1)
Institute
Hepcidin-25 (Hep-25) plays a crucial role in the control of iron homeostasis. Since the dysfunction of the hepcidin pathway leads to multiple diseases as a result of iron imbalance, hepcidin represents a potential target for the diagnosis and treatment of disorders of iron metabolism. Despite intense research in the last decade targeted at developing a selective immunoassay for iron disorder diagnosis and treatment and better understanding the ferroportin-hepcidin interaction, questions remain. The key to resolving these underlying questions is acquiring exact knowledge of the 3D structure of native Hep-25. Since it was determined that the N-terminus, which is responsible for the bioactivity of Hep-25, contains a small Cu(II)-binding site known as the ATCUN motif, it was assumed that the Hep-25-Cu(II) complex is the native, bioactive form of the hepcidin. This structure has thus far not been elucidated in detail. Owing to the lack of structural information on metal-bound Hep-25, little is known about its possible biological role in iron metabolism. Therefore, this work is focused on structurally characterizing the metal-bound Hep-25 by NMR spectroscopy and molecular dynamics simulations. For the present work, a protocol was developed to prepare and purify properly folded Hep-25 in high quantities. In order to overcome the low solubility of Hep-25 at neutral pH, we introduced the C-terminal DEDEDE solubility tag. The metal binding was investigated through a series of NMR spectroscopic experiments to identify the most affected amino acids that mediate metal coordination. Based on the obtained NMR data, a structural calculation was performed in order to generate a model structure of the Hep-25-Ni(II) complex. The DEDEDE tag was excluded from the structural calculation due to a lack of NMR restraints. The dynamic nature and fast exchange of some of the amide protons with solvent reduced the overall number of NMR restraints needed for a high-quality structure. The NMR data revealed that the 20 Cterminal Hep-25 amino acids experienced no significant conformational changes, compared to published results, as a result of a pH change from pH 3 to pH 7 and metal binding. A 3D model of the Hep-25-Ni(II) complex was constructed from NMR data recorded for the hexapeptideNi(II) complex and Hep-25-DEDEDE-Ni(II) complex in combination with the fixed conformation of 19 C-terminal amino acids. The NMR data of the Hep-25-DEDEDE-Ni(II) complex indicates that the ATCUN motif moves independently from the rest of the structure. The 3D model structure of the metal-bound Hep-25 allows for future works to elucidate hepcidin’s interaction with its receptor ferroportin and should serve as a starting point for the development of antibodies with improved selectivity.
Proteine erfüllen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufklärung derer Struktur und deren Bindungsverhaltens mit anderen Molekülen wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molekülen. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Größenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zugängliche Stellen im Protein für eine mögliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren über zwischenmolekulare Kräfte mit den Seitenketten von aromatischen Aminosäuren und über Wasserstoffbrückenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie Löslichkeit oder Stabilität zu beeinflussen. Es zeigte sich, das während die grafting from Methode (Polymer wächst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins führte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilität behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit beschäftigte sich mit der Interaktion von zwei LIM-Domänen des Proteins Paxillin und der zytoplasmatischen Domäne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adhäsionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Größenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminosäuregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, nämlich an den flexiblen Loop der LIM3-Domäne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach höheren Affinität im Vergleich zu Integrin-β3 an Paxillin bindet. Während Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminosäuren entfernt und erneut Bindungsstudien durchgeführt, welche gezeigt haben, das die Affinität dadurch fast vollständig unterbunden wurde. Final wurde der flexible Loop der LIM3-Domäne in zwei andere Aminosäuresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszulöschen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Domäne geführt haben und somit nicht als geeignete Kandidaten für diese Studien identifiziert werden konnten.
Two approaches for the synthesis of prenylated isoflavones were explored: the 2,3-oxidative rearrangement/cross metathesis approach, using hypervalent iodine reagents as oxidants and the Suzuki-Miyaura cross-coupling/cross metathesis approach. Three natural prenylated isoflavones: 5-deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7-methoxyebenosin (64), and non-natural analogues: 7,4′-dimethoxy-8,3′-diprenylisoflavone (126j) and 4′-hydroxy-7-methoxy-8,3′-diprenylisoflavone (128) were synthesized for the first time via the 2,3-oxidative rearrangement/cross metathesis approach, using mono- or diallylated flavanones as key intermediates. The reaction of flavanones with hypervalent iodine reagents afforded isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via a 2,3-dehydrogenation. This afforded the synthesis of 7,4′-dimethoxy-8-prenylflavone (127g), 7,4′-dimethoxy-8,3′-diprenylflavone (127j), 7,4′-dihydroxy-8,3′-diprenylflavone (129) and 4′-hydroxy-7-methoxy-8,3′-diprenylflavone (130), the non-natural regioisomers of 7-methoxyebenosin, 126j, erysubin F and 128 respectively. Three natural prenylated isoflavones: 3′-prenylbiochanin A (58), neobavaisoflavone (66) and 7-methoxyneobavaisoflavone (137) were synthesized for the first time using the Suzuki-Miyaura cross-coupling/cross metathesis approach. The structures of 3′-prenylbiochanin A (58) and 5-deoxy-3′-prenylbiochanin A (59) were confirmed by single crystal X-ray diffraction analysis. The 2,3-oxidative rearrangement approach appears to be limited to the substitution pattern on both rings A and B of the flavanone while the Suzuki-Miyaura cross-coupling approach appears to be the most suitable for the synthesis of simple isoflavones or prenylated isoflavones whose prenyl substituents or allyl groups, the substituents that are essential precursors for the prenyl side chains, can be regioselectively introduced after the construction of the isoflavone core.
The chalcone-flavanone hybrids 146, 147 and 148, hybrids of the naturally occurring bioactive flavanones liquiritigenin-7-methyl ether, liquiritigenin and liquiritigenin-4′-methyl ether respectively were also synthesized for the first time, using Matsuda-Heck arylation and allylic/benzylic oxidation as key steps.
The intermolecular interactions of 5-deoxy-3′-prenylbiochanin A (59) and its two closely related precursors 106a and 106b was investigated by single crystal and Hirshfeld surface analyses to comprehend their different physicochemical properties. The results indicate that the presence of strong intermolecular O-H···O hydrogen bonds and an increase in the number of π-stacking interactions increases the melting point and lowers the solubility of isoflavone derivatives. However, the strong intermolecular O-H···O hydrogen bonds have a greater effect than the π-stacking interactions.
5-Deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7,4′-dihydroxy-8,3′-diprenylflavone (129), were tested against three bacterial strains and one fungal pathogen. All the three compounds were inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated isoflavone erysubin F (61) and its flavone isomer 129 showed in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. 5-Deoxy-3′-prenylbiochanin A (59) was inactive against this MRSA strain. Erysubin F (61) and its flavone isomer 129 could serve as lead compounds for the development of new alternative drugs for the treatment of MRSA infections.
The incorporation of proteins in artificial materials such as membranes offers great opportunities to avail oneself the miscellaneous qualities of proteins and enzymes perfected by nature over millions of years. One possibility to leverage proteins is the modification with artificial polymers. To obtain such protein-polymer conjugates, either a polymer can be grown from the protein surface (grafting-from) or a pre-synthesized polymer attached to the protein (grafting-to). Both techniques were used to synthesize conjugates of different proteins with thermo-responsive polymers in this thesis.
First, conjugates were analyzed by protein NMR spectroscopy. Typical characterization techniques for conjugates can verify the successful conjugation and give hints on the secondary structure of the protein. However, the 3-dimensional structure, being highly important for the protein function, cannot be probed by standard techniques. NMR spectroscopy is a unique method allowing to follow even small alterations in the protein structure. A mutant of the carbohydrate binding module 3b (CBM3bN126W) was used as model protein and functionalized with poly(N-isopropylacrylamide). Analysis of conjugates prepared by grafting-to or grafting-from revealed a strong impact of conjugation type on protein folding. Whereas conjugates prepared by grafting a pre-formed polymer to the protein resulted in complete preservation of protein folding, grafting the polymer from the protein surface led to (partial) disruption of the protein structure.
Next, conjugates of bovine serum albumin (BSA) as cheap and easily accessible protein were synthesized with PNIPAm and different oligoethylene glycol (meth)acrylates. The obtained protein-polymer conjugates were analyzed by an in-line combination of size exclusion chromatography and multi-angle laser light scattering (SEC-MALS). This technique is particular advantageous to determine molar masses, as no external calibration of the system is needed. Different SEC column materials and operation conditions were tested to evaluate the applicability of this system to determine absolute molar masses and hydrodynamic properties of heterogeneous conjugates prepared by grafting-from and grafting-to. Hydrophobic and non-covalent interactions of conjugates lead to error-prone values not in accordance to expected molar masses based on conversions and extents of modifications.
As alternative to this method, conjugates were analyzed by sedimentation velocity analytical ultracentrifugation (SV-AUC) to gain insights in the hydrodynamic properties and how they change after conjugation. Within a centrifugal field, a sample moves and fractionates according to the mass, density, and shape of its individual components. Conjugates of BSA with PNIPAm were analyzed below and above the cloud point temperature of the thermo-responsive polymer component. It was identified that the polymer characteristics were transferred to the conjugate molecule which than showed a decreased ideality – defined as increased deviation from a perfect sphere model – below and increased ideality above the cloud point temperature. This effect can be attributed to an arrangement of the polymer chain pointing towards the solvent (expanded state) or snuggling around the protein surface depending on the applied temperature.
The last project dealt with the synthesis of ferric hydroxamate uptake protein component A (FhuA)-polymer conjugates as building blocks for novel membrane materials. The shape of FhuA can be described as barrel and removal of a cork domain inside the protein results in a passive channel aimed to be utilized as pores in the membrane system. The polymer matrix surrounding the membrane protein is composed of a thermo-responsive and a UV-crosslinkable part. Therefore, an external trigger for covalent immobilization of these building blocks in the membrane and switchability of the membrane between different states was incorporated. The overall performance of membranes prepared by a drying-mediated self-assembly approach was evaluated by permeability and size exclusion experiments. The obtained membranes displayed an insufficiency in interchain crosslinking and therefore a lack in performance. Furthermore, the aimed switch between a hydrophilic and hydrophobic state of the polymer matrix did not occur. Correspondingly, size exclusion experiments did not result in a retention of analytes larger than the pores defined by the dimension of the used FhuA variant.
Overall, different paths to generate protein-polymer conjugates by either grafting-from or grafting-to the protein surface were presented paving the way to the generation of new hybrid materials. Different analytical methods were utilized to describe the folding and hydrodynamic properties of conjugates providing a deeper insight in the overall characteristics of these seminal building blocks.