Refine
Has Fulltext
- yes (1)
Year of publication
- 2024 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Is part of the Bibliography
- yes (1)
Keywords
Institute
The landscape of software self-adaptation is shaped in accordance with the need to cost-effectively achieve and maintain (software) quality at runtime and in the face of dynamic operation conditions. Optimization-based solutions perform an exhaustive search in the adaptation space, thus they may provide quality guarantees. However, these solutions render the attainment of optimal adaptation plans time-intensive, thereby hindering scalability. Conversely, deterministic rule-based solutions yield only sub-optimal adaptation decisions, as they are typically bound by design-time assumptions, yet they offer efficient processing and implementation, readability, expressivity of individual rules supporting early verification. Addressing the quality-cost trade-of requires solutions that simultaneously exhibit the scalability and cost-efficiency of rulebased policy formalism and the optimality of optimization-based policy formalism as explicit artifacts for adaptation. Utility functions, i.e., high-level specifications that capture system objectives, support the explicit treatment of quality-cost trade-off. Nevertheless, non-linearities, complex dynamic architectures, black-box models, and runtime uncertainty that makes the prior knowledge obsolete are a few of the sources of uncertainty and subjectivity that render the elicitation of utility non-trivial.
This thesis proposes a twofold solution for incremental self-adaptation of dynamic architectures. First, we introduce Venus, a solution that combines in its design a ruleand an optimization-based formalism enabling optimal and scalable adaptation of dynamic architectures. Venus incorporates rule-like constructs and relies on utility theory for decision-making. Using a graph-based representation of the architecture, Venus captures rules as graph patterns that represent architectural fragments, thus enabling runtime extensibility and, in turn, support for dynamic architectures; the architecture is evaluated by assigning utility values to fragments; pattern-based definition of rules and utility enables incremental computation of changes on the utility that result from rule executions, rather than evaluating the complete architecture, which supports scalability. Second, we introduce HypeZon, a hybrid solution for runtime coordination of multiple off-the-shelf adaptation policies, which typically offer only partial satisfaction of the quality and cost requirements. Realized based on meta-self-aware architectures, HypeZon complements Venus by re-using existing policies at runtime for balancing the quality-cost trade-off.
The twofold solution of this thesis is integrated in an adaptation engine that leverages state- and event-based principles for incremental execution, therefore, is scalable for large and dynamic software architectures with growing size and complexity. The utility elicitation challenge is resolved by defining a methodology to train utility-change prediction models. The thesis addresses the quality-cost trade-off in adaptation of dynamic software architectures via design-time combination (Venus) and runtime coordination (HypeZon) of rule- and optimization-based policy formalisms, while offering supporting mechanisms for optimal, cost-effective, scalable, and robust adaptation. The solutions are evaluated according to a methodology that is obtained based on our systematic literature review of evaluation in self-healing systems; the applicability and effectiveness of the contributions are demonstrated to go beyond the state-of-the-art in coverage of a wide spectrum of the problem space for software self-adaptation.