Refine
Document Type
- Doctoral Thesis (19)
Is part of the Bibliography
- yes (19)
Keywords
- Nanopartikel (3)
- Salzschmelze-Templating (2)
- magnetic resonance imaging (2)
- salt melt templating (2)
- Aktuator (1)
- Alkylpyridinium salts (1)
- Alkylpyridinium-Salze (1)
- Aufkonversion (1)
- Biomasse (1)
- Biomodification (1)
Institute
- Institut für Chemie (18)
- Extern (3)
- Institut für Physik und Astronomie (1)
Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components.
The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability.
At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the “grafting from” approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization.
For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation.
The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt%/wt%) and the amount of iron oxide in the nanocomposite was 4 wt%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite.
The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off.
For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C.
In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators.
Magnetische Eisenoxidnanopartikel werden bereits seit geraumer Zeit erfolgreich als MRT-Kontrastmittel in der klinischen Bildgebung eingesetzt. Durch Optimierung der magnetischen Eigenschaften der Nanopartikel kann die Aussagekraft von MR-Aufnahmen verbessert und somit der diagnostische Wert einer MR-Anwendung weiter erhöht werden. Neben der Verbesserung bestehender Verfahren wird die bildgebende Diagnostik ebenso durch die Entwicklung neuer Verfahren, wie dem Magnetic Particle Imaging, vorangetrieben. Da hierbei das Messsignal von den magnetischen Nanopartikeln selbst erzeugt wird, birgt das MPI einen enormen Vorteil hinsichtlich der Sensitivität bei gleichzeitig hoher zeitlicher und räumlicher Auflösung. Da es aktuell jedoch keinen kommerziell vertriebenen in vivo-tauglichen MPI-Tracer gibt, besteht ein dringender Bedarf an geeigneten innovativen Tracermaterialien. Daraus resultierte die Motivation dieser Arbeit biokompatible und superparamagnetische Eisenoxidnanopartikel für den Einsatz als in vivo-Diagnostikum insbesondere im Magnetic Particle Imaging zu entwickeln. Auch wenn der Fokus auf der Tracerentwicklung für das MPI lag, wurde ebenso die MR-Performance bewertet, da geeignete Partikel somit alternativ oder zusätzlich als MR-Kontrastmittel mit verbesserten Kontrasteigenschaften eingesetzt werden könnten.
Die Synthese der Eisenoxidnanopartikel erfolgte über die partielle Oxidation von gefälltem Eisen(II)-hydroxid und Green Rust sowie eine diffusionskontrollierte Kopräzipitation in einem Hydrogel.
Mit der partiellen Oxidation von Eisen(II)-hydroxid und Green Rust konnten erfolgreich biokompatible und über lange Zeit stabile Eisenoxidnanopartikel synthetisiert werden. Zudem wurden geeignete Methoden zur Formulierung und Sterilisierung etabliert, wodurch zahlreiche Voraussetzungen für eine Anwendung als in vivo-Diagnostikum geschaffen wurden. Weiterhin ist auf Grundlage der MPS-Performance eine hervorragende Eignung dieser Partikel als MPI-Tracer zu erwarten, wodurch die Weiterentwicklung der MPI-Technologie maßgeblich vorangetrieben werden könnte. Die Bestimmung der NMR-Relaxivitäten sowie ein initialer in vivo-Versuch zeigten zudem das große Potential der formulierten Nanopartikelsuspensionen als MRT-Kontrastmittel. Die Modifizierung der Partikeloberfläche ermöglicht ferner die Herstellung zielgerichteter Nanopartikel sowie die Markierung von Zellen, wodurch das mögliche Anwendungsspektrum maßgeblich erweitert wurde.
Im zweiten Teil wurden Partikel durch eine diffusionskontrollierte Kopräzipitation im Hydrogel, wobei es sich um eine bioinspirierte Modifikation der klassischen Kopräzipitation handelt, synthetisiert, wodurch Partikel mit einer durchschnittlichen Kristallitgröße von 24 nm generiert werden konnten. Die Bestimmung der MPS- und MR-Performance elektrostatisch stabilisierter Partikel ergab vielversprechende Resultate. In Vorbereitung auf die Entwicklung eines in vivo-Diagnostikums wurden die Partikel anschließend erfolgreich sterisch stabilisiert, wodurch der kolloidale Zustand in MilliQ-Wasser über lange Zeit aufrechterhalten werden konnte. Durch Zentrifugation konnten die Partikel zudem erfolgreich in verschiedene Größenfraktionen aufgetrennt werden. Dies ermöglichte die Bestimmung der idealen Aggregatgröße dieses Partikelsystems in Bezug auf die MPS-Performance.
Die intrazelluläre Markierung mit geeigneten Reagenzien ermöglicht ihre bildgebende Darstellung in lebenden Organismen. Dieses Verfahren (auch „Zell-Tracking“ genannt) wird in der Grundlagenforschung zur Entwicklung zellulärer Therapien, für die Erforschung pathologischer Prozesse, wie der Metastasierung, sowie für Therapiekontrollen eingesetzt. Besondere Bedeutung haben in den letzten Jahren zelluläre Therapien mit Stammzellen erlangt, da sie großes Potential bei der Regeneration von Geweben bei Krankheiten wie Morbus Parkinson oder Typ-1-Diabetes versprechen. Für die Entwicklung einer zellulären Therapie sind Informationen über den Verbleib der applizierten Zellen in vivo (Homing-Potential), über ihre Zellphysiologie sowie über die Entstehung möglicher Entzündungen notwendig. Das Ziel der vorliegenden Arbeit war daher die Synthese von Markierungsreagenzien, die nicht nur eine effiziente Zellmarkierung ermöglichen, sondern einen synergistischen Effekt hinsichtlich des modalitätsübergreifenden Einsatzes in den bildgebenden Verfahren MRT und Laser-Ablation(LA)-ICP-MS erlauben. Die MRT-Bildgebung ermöglicht die nicht invasive Nachverfolgung markierter Zellen in vivo und die LA-ICP-MS die anschließende ex vivo Analytik zur Darstellung der Elementverteilung (Bioimaging) in einer Biopsieprobe oder in einem Gewebeschnitt. Für diese Zwecke wurden zwei verschiedene Markierungsreagenzien mit dem kontrastgebenden Element Gadolinium synthetisiert. Gadolinium eignet sich aufgrund seines hohen magnetischen Moments hervorragend für die MRT-Bildgebung und da es in Biomolekülen nicht natürlich vorkommt, konnten die Reagenzien gleichermaßen für die Zellmarkierung und das Bioimaging mit der LA-ICP-MS untersucht werden. Für die Synthese eines makromolekularen Reagenzes wurde das kommerziell verfügbare Dendrimer G5-PAMAM über bifunktionelle Linker mit dem Chelator DOTA funktionalisiert, um anschließend Gadolinium zu komplexieren. Ein zweites, nanopartikuläres Reagenz wurde über eine Solvothermal-Synthese erhalten, bei der Ln:GdVO4-Nanokristalle mit einer funktionellen Polyacrylsäure(PAA)-Hülle dargestellt wurden. Die Dotierung der Ln:GdVO4-PAA Nanokristalle mit verschiedenen Lanthanoiden (Ln=Eu, Tb) zeigte ihre prinzipielle Multiplexfähigkeit in der LA-ICP-MS. Beide Markierungsreagenzien zeichneten sich durch gute Bioverträglichkeiten und r1-Relaxivitäten aus, was zudem ihr Potential für Anwendungen als präklinische „blood-pool“ MRT-Kontrastmittel belegte. Die Untersuchung der Zellmarkierung erfolgte anhand einer Tumorzelllinie und einer Stammzelllinie, wobei beide Zellarten erfolgreich intrazellulär mit beiden Reagenzien markiert wurden. Nach der Zellmarkierung veranschaulichte die in vitro MRT-Bildgebung von Zell-Phantomen eine deutlichere Kontrastverstärkung der Zellen nach der Markierung mit den Nanokristallen im Vergleich zum kommerziellen Kontrastmittel Magnevist®. Die hohe Effizienz der Zellmarkierung mit den Nanokristallen und die damit verbundenen hohen Signalintensitäten in einer einzelnen Zelle erlaubten beim Bioimaging mit der LA-ICP-MS, Messungen bis zu einer Auflösung von 4 µm Laser Spot Size. Nach der Zellmarkierung mit den DOTA(Gd3+)-funktionalisierten G5-PAMAM Dendrimeren waren hingegen Aufnahmen mit der LA-ICP-MS nur bis zu einer Auflösung von 12 µm Laser Spot Size möglich. Insgesamt waren die Ln:GdVO4-PAA Nanokristalle mit größerer Ausbeute und kostengünstiger herstellbar als die DOTA(Gd3+)-funktionalisierten G5-PAMAM Dendrimere und zeigten zudem eine effizientere Zellmarkierung. Die Ln:GdVO4-PAA Nanokristalle erscheinen somit für das Zell-Tracking als besonders vielversprechend. Darauf aufbauend wurden die Nanokristalle zur Etablierung der Antikörper-Konjugation ausgewählt, was sie für die molekulare in vivo Bildgebung sowie für die Immuno-Bildgebung von Gewebeschnitten oder Biopsie-Proben mit der LA-ICP-MS anwendbar macht.
Im Rahmen dieser Arbeit wird anhand von neuartigen Materialien das Potential der Europium-Lumineszenz für die strukturelle Analyse dargestellt. Bei diesen Materialien handelt es sich zum einen um Nanopartikel mit Matrizes aus mehreren Metall-Mischoxiden und Dotierungen durch die Sonde Europium und zum anderen um Metallorganische Netzwerke (MOFs), die mit Neodym , Samarium- und Europium-Ionen beladen sind.
Die Synthese der aus der Kombination von Metalloxiden enthaltenen Nanopartikel ist unter milden Bedingungen mithilfe von speziell dafür hergestellten Reagenzien erfolgt und hat zu sehr kleinen, amorphen Nanopartikeln geführt. Durch eine nachfolgende Temperaturbehandlung hat sich die Kristallinität erhöht. Damit verbunden haben sich auch die Kristallstruktur sowie die Position des Dotanden Europium verändert.
Während die etablierte Methode der Röntgendiffraktometrie einen Blick auf das Kristallgitter als Gesamtes ermöglicht, so trifft die Lumineszenz des Europiums durch die Sichtbarkeit einzelner Stark-Aufspaltungen Aussagen über dessen lokale Symmetrien. Die Symmetrie wird durch Sauerstofffehlstellen verändert, welche die Sauerstoffleitfähigkeit der Nanopartikel beeinflussen. Diese ist für die Anwendung als Katalysatoren in industriellen Prozessen und ebenso als Sensoren und Therapeutika in biologischen Systemen von Bedeutung.
Zur ersten katalytischen Charakterisierung werden die Proben mittels Temperatur-programmierter Reduktion untersucht. Des Weiteren werden die Mischoxid-Nanopartikel auch hinsichtlich ihrer Verwendbarkeit als Matrix in Aufkonversionsprozessen untersucht.
Die Metallorganischen Netzwerke eignen sich aufgrund ihrer mikroporösen Struktur für Anwendungen in der Speicherung gleichermaßen von Nutzgasen wie auch von Schadstoffen. Ebenfalls ist eine biologische Anwendung denkbar, die insbesondere den Bereich der drug delivery-Reagenzien betrifft.
Erfolgt in die mikroporösen Strukturen der Metallorganischen Netzwerke die Einlagerung von Lanthanoid-Ionen, so können diese bei der entsprechenden Kombination als Weißlicht-Emittierer fungieren. Dabei ist neben den Verhältnissen zwischen den Lanthanoid-Ionen auch die genaue Position innerhalb des Netzwerks sowie die Distanz zu anderen Ionen von Interesse. Zur Untersuchung dieser Fragestellungen wird die Umgebungssensitivität der Europium-Lumineszenz ausgenutzt. Die auf diese Weise festgestellte Formiat-Bildung hängt von zahlreichen Parametern ab.
Insgesamt stellt sich die im Rahmen dieser Arbeit verwendete Methodik des Einsatzes von Europium als strukturelle Sonde in höchstem Maße vielseitig dar und zeigt seine größte Stärke in der Kombination mit weiteren Methoden der Strukturanalytik. Die auf diese Weise genauestens charakterisierten neuartigen Materialien können nun gezielt und anwendungsfokussiert weiterentwickelt werden.
Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain.
Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids.
Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents.
In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting.
The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.
Hybrid organic-inorganic perovskites have attracted attention in recent years, caused by the incomparable increase in efficiency in energy convergence, which implies the application as an absorber material for solar cells. A disadvantage of these materials is, among others, the instability to moisture and UV-radiation. One possible solution for these problems is the reduction of the size towards the nano world. With that nanosized perovskites are showing superior stability in comparison to e.g. perovskite layers. Additionally to this the nanosize even enables stable perovskite structures, which could not be achieved otherwise at
room temperature.
This thesis is separated into two major parts. The separation is done by the composition and the band gap of the material and at the same time the shape and size of the nanoparticles. Here the division is made by the methylammonium lead tribromide nanoplatelets and the caesium lead triiodide nanocubes.
The first part is focusing on the hybrid organic-inorganic perovskite (methylammonium lead tribromide) nanoplatelets with a band gap of 2.35 eV and their thermal behaviour. Due to the challenging character of this material, several analysis methods are used to investigate the sub nano and nanostructures under the influence of temperature. As a result, a shift of phase-transition temperatures towards higher temperatures is observed. This unusual behaviour can be explained by the ligand, which is incorporated in the perovskite outer structure and adds phase-stability into the system.
The second part of this thesis is focusing on the inorganic caesium lead triiodide nanocubes with a band gap of 1.83 eV. These nanocrystals are first investigated and compared by TEM, XRD and other optical methods. Within these methods, a cuboid and orthorhombic structure are revealed instead of the in literature described cubic shape and structure. Furthermore, these cuboids are investigated towards their self-assembly on a substrate. Here a high degree in self-assembly is shown. As a next step, the ligands of the nanocuboids are exchanged against other ligands to increase the charge carrier mobility. This is further investigated by the above-mentioned methods. The last section is dealing with the enhancement of the CsPbI3 structure, by incorporating potassium in the crystal structure. The results are suggesting here an increase in stability.
In recent years the development of renewable energy sources attracted much attention due to the increasing environmental pollution induced by burning fossil fuels. The growing public interest in reducing greenhouse gases and the use of pollution-free energies (bio-mass-, geothermal-, solar-, water- or wind energy) paved the way for scientific research in renewable energies. [1] Solar energy provides unlimited access and offers high applicational flexibility, which is needed for energy consumption in a modern society. The scientific interest in photovoltaics (PV) nowadays focuses on discovering new materials and improving materials properties, aiming for the production of highly efficient solar cells. Lately, a new type of absorber material based on the perovskite type structure reached power conversion efficiencies of more than 24%. [2] By varying the chemical composition the electronic properties as e.g. the band gap energy can be tuned to increase the absorption range of this absorber material. This makes them in particular attractive for use in tandem solar cells, where silicon and perovskite absorber layers are combined to absorb a large range of the vible light (28.0% efficiency). [2] However, perovskite based solar cells not only suffer from fast degradation when exposed to humidity, but also from the use of toxic elements (e.g. lead), which can result in long-term environmental damage. Therefore, the aim of this study was to determine the fundamental structural and optoelectronical properties of highly interesting hybrid perovskite materials, the MAPbX3 solid solution (MA=CH3NH3; X=I,Br,Cl) and the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution (FA=HC(NH2)2). The study was performed on powder samples by using X-ray diffraction, revealing the crystal structure and solubility behavior of all solid solutions. Moreover the temperature-dependent behavior was studied using in-situ high resolution synchrotron X-ray diffraction and combinatorial thermal analysis methods. The influence of compositional changes on the band gap energy variation were observed using spectroscopic methods as photoluminescence and diffuse reflectance spectroscopy. The obtained results have shown that for the MAPb(I1-xBrx)3 solid solution a large miscibility gap in the range of 0.29 ( ± 0.02) ≤ x ≤ 0.92 ( ± 0.02) is present. This miscibility gap limits the suitable compositional range for use in thin film solar cells of mixed halide compounds. From the temperature-dependent in-situ synchrotron X-ray diffraction studies the complete T-X-phase diagram was established. Studies on the MAPb(Cl1-xBrx)3 solid solution revealed that MAPb(Cl1-xBrx)3 forms a complete solid solution series. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution the aim was to study the formation of the d-modification in FAPbI3, which is undesired for solar cell application. This can be overcome by stabilizing the favored high temperature cubic a-modification at ambient conditions. By partial substituting the formamidinium molecule by methylammonium and cesium the stabilization of the cubic modification was successful. The solubility limit of FA1-xCsxPbI3 solid solution was determined to be x=0.1, while a full miscibility was observed for the FA1-xMAxPbI3 solid solution. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution a solubility limit of cesium was observed to be y=0.1. The optoelectronic properties were investigated, revealing a linear change of band gap energy with chemical composition. It is demonstrated that the stabilized triple cation compound with cubic perovskite-type crystal structure shows enhanced stability of approximately six months. Furthermore, a short insight into lead-free perovskite-type materials is given, using germanium as non-toxic alternative to lead. For germanium based perovskites a fast decomposition in air was observed, due to the preferred formation of GeI4 in oxygen atmosphere. In-situ low temperature synchrotron X-ray diffraction measurements revealed a yet unknown low temperature modification of MAGeI3. [1] WESSELAK, Viktor; SCHABBACH, Thomas; LINK, Thomas; FISCHER, Joachim: Handbuch Regenerative Energietechnik. Springer, 2017 [2] NREL: Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. – 25.04.2019
In recent years people have realised non-renewability of our modern society which relays on spending huge amounts of energy mostly produced from fosil fuels, such as oil and coal, and the shift towards more sustainable energy sources has started. However, sustainable sources of energy, such as wind-, solar- and hydro-energy, produce primarily electrical energy and can not just be poured in canister like many fosil fuels, creating necessity for rechragable batteries. However, modern Li-ion batteries are made from toxic heavy metals and sustainable alternatives are needed. Here we show that naturally abundant catecholic and guaiacyl groups can be utilised to replace heavy metals in Li-ion batteries.
Foremost vanillin, a naturally occurring food additive that can be sustainably synthesised from industrial biowaste, lignin, was utilised to synthesise materials that showed extraordinary performance as cathodes in Li-ion batteries. Furthermore, behaviour of catecholic and guiacyl groups in Li-ion system was compared, confirming usability of guiacayl containing biopolymers as cathodes in Li-ion batteries. Lastly, naturally occurring polyphenol, tannic acid, was incorporated in fully bioderived hybrid material that shows performance comparable to commercial Li-ion batteries and good stability.
This thesis presents an important advancement in understanding of biowaste derived cathode materials for Li-ion batteries. Further research should be conducted to better understand behaviour of guaiacyl groups during Li-ion battery cycling. Lastly, challenges of incorporation of lignin, an industrial biowaste, have to be addressed and lignin should be incorporated as a cathode material in Li-ion batteries.