### Refine

#### Year of publication

#### Document Type

- Article (36)
- Monograph/Edited Volume (3)
- Preprint (2)
- Doctoral Thesis (1)

Using a special technique of data analysis, we have found out 34 grand minima of solar activity obtained from a 7,700 years long Δ14C record. The method used rests on a proper filtering of the Δ14C record and the extrapolation of verifiable results for the later history back in time. Additionally, we use a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of solar maxima resp. minima by Eddy [5], but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested several models for solar activity, esp. the model of Barnes et al. [1]. There are hints for that the grand minima might solely be driven by the 209 year period found in the Δ14C record.

We study possible interrelations between the 300-year record of the yearly sunspot numbers and the solar inertial motion (SIM) using the recently developed technique of synchronization analysis. Phase synchronization of the sunspot cycle and the SIM is found and statistically confirmed in three epochs (1734-1790, 1855-1875 and 1907-1960) of the whole period 1700-2000. These results give quantitative support to the hypothesis that there is a weak interaction between the solar activity and the SIM.

As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control.

A new globally uniform Lagrangian transport scheme for large ensembles of passive tracer particles is presented and applied to wind data from a coupled atmosphere-ocean climate model that includes interactive dynamical feedback with stratospheric chemistry. This feedback from the chemistry is found to enhance large-scale meridional air mass exchange in the northern winter stratosphere as well as intrusion of stratospheric air into the troposphere, where both effects are due to a weakened polar vortex.

In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally induced errors can be estimated with 1-2${mu m}$ accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems.