Refine
Year of publication
Document Type
- Article (85)
- Postprint (5)
- Review (2)
- Doctoral Thesis (1)
- Other (1)
- Part of Periodical (1)
Is part of the Bibliography
- yes (95)
Keywords
- singlet oxygen (11)
- Synthetic methods (7)
- anthracenes (5)
- carbohydrates (5)
- peroxides (5)
- Lactams (4)
- photooxygenation (4)
- radicals (4)
- Arenes (3)
- Birch reduction (3)
Institute
Quinoxalines XV : convenient synthesis and structural study of pyrazolo[1,5-alpha]quinoxalines
(2009)
A series of aryloxymethylquinoxaline oximes, hitherto unknown and synthesized from the corresponding aldehydes, afforded in only one step pyrazolo[1,5-;]quinoxalines in the presence of acetic anhydride at high temperatures. A formal [3,5]-sigmatropic rearrangement was proposed as the mechanistic rationale for this unprecedented transformation. Saponification with potassium hydroxide furnished the free phenol derivatives which were studied by NMR spectroscopy and accompanying theoretical DFT calculations, establishing intramolecular hydrogen bonding and the spatial magnetic properties. Additionally, mass spectrometric fragmentation was investigated by B/E-linked scans and collision-induced dissociation experiments. The fragmentation pattern devoted a new gas phase rearrangement process, which proved to be unique and characteristic for pyrazolo[1,5-;]quinoxalines.
Phosphorus meets carbohydrates: Dimethyl phosphite reacts with ceric(IV) ammonium nitrate (CAN) to give phosphonyl radicals that add to glycals 1. The derivatives 2 were isolated in high yields and during a subsequent Horner-Emmons reaction underwent an interesting elimination to give 3,6-dihydro-2H-pyrans 3. The short sequence with simple precursors is applicable to the transformation of hexoses, pentoses, and disaccharides. Bn=benzyl.
Herein we demonstrate how the photoreaction between anthracenes and singlet oxygen (O-1(2)) is employed for applications either as photoswitch or as photoresist. Thin Films of the diaryl-alkyl anthracene 1 and the analogous oligomeric species 2 were it-radiated under photomasks to generate pattern structures composed of 1/1-O-2 and 2/2-O-2. Kelvin probe force microscopy (KPFM) provided a powerful and nondestructive method to image the pattern information. The following studies based on AFM, KPFM and contact angle measurements unfold that the two species 1 and 2 underwent different progressions after the imaging step. Degrading is observed for the monomeric compound 1 and the pattern eventually becomes recognizable in topography. In the oxidized state (1-O-2) the monomeric species remains physically stable. In consequence, the unreacted portion is removable and the remaining oxygenated form 1-O-2 is sufficiently stable to protect in underlying substrate (e.g., silver) from etching. Thus, the system 1/1-O-2 operates as photoresist. Oil the other hand, both states of the oligomier 2 remain stable. The Film is stable up to temperatures > 120 degrees C required to erase the pattern within acceptable time by cycloreversion. Anthracene 2 therefore acts as erasable and rewritable photochromic switch. The different behavior between 1 and 2 is explained by phase transitions which cause crystallization and finally ablation. Such transitions affect only the monomeric system 1/1-O-2 and not the oligomeric system 2/2-O-2. In conclusion, we designed two very similar materials based on diarylanthracenes, which can act either as a photoresist or as a rewritable photochrornic switch.
The esters of 4-hydroxy-cyclohexanone and a series of carboxylic acids R-COOH with R of different electronic and steric influence (R=Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, and CBr3) were synthesized and the conformational equilibria studied by 1H and 13C NMR spectroscopy at 103 K and at 295 K, respectively. The geometry of optimized structures of the axial/equatorial chair conformers was computed at the ab initio MO and DFT levels of theory. Only one preferred conformation was obtained for the axial and the equatorial conformer as well. When comparing the conformational equilibria of the cyclohexanone esters with those of the corresponding cyclohexyl esters a certain polarity contribution of the cyclohexanone framework was revealed, which is independent of the substituent effects and increases the stability of the axial conformers by a constant amount.
Films of anthracene carboxylic acids were irradiated through photomasks and oxidized at the exposed regions by singlet oxygen upon sensitization. The efficiency of a photomask to protect the material underneath was investigated by optical and infrared spectroscopy. As the thickness of the film is reduced, the efficiency of the mask drops. This is explained by the migration of singlet oxygen at the solid-air interface, which in turn reacts at the masked area. For films with a thickness of < 15 nm, the efficiency of the mask approaches zero: sufficient efficiency is achieved at thicknesses > 100 nm. From the investigations, it will become clear that the contrast between the irradiated and masked area of an image is affected by reduction of the film thickness. On the other hand, the resolution of an image, which relates to the minimum feature size of an image, is not dependent on the thickness of the film. The contributions of "inside" and "outside" reactions are examined separately, and it quantitative approximation of the spatial range of both modes of the oxygenation is given. We set tip an approximate relation between mask efficiency and experimental conditions comprising internal and external oxygen diffusion, film thickness, and mask dimensions. These results give it deeper insight into the limits of resolution and contrast in singlet oxygen lithography.
Awards
(2013)