Refine
Document Type
- Article (5)
- Part of Periodical (1)
- Postprint (1)
Keywords
- Nanoscale zero-valent iron (nZVI) (3)
- Carbon colloid (2)
- Aquifer systems (1)
- Carbo-Iron (1)
- Carbo-Iron (R) (1)
- Colloid transport (1)
- Dyslexie (1)
- Fe-C composite (1)
- Field aquifer (1)
- Grundwassersanierung (1)
Institute
Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by-orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a Mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d(50) = 2.4 mu m) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62 mV to -80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. (C) 2014 Elsevier B.V. All rights reserved.
The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 53 m in a confined, natural aquifer. The injection/extraction rate was 500 L/h. Approximately 12 kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. (C) 2015 Elsevier B.V. All rights reserved.
The use of nano zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, due to fast aggregation and sedimentation of nZVI, limits the capability for source and plume remediation. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0,8 µm) that are plated with nZVI particles. These particles combine the mobility of activated carbon and the reactivity of nZVI. This paper presents the first results of the transport experiments.
Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle "Carbo-Iron Colloids" (CIC) with a mean size of 0.63 mu m in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110x40x5 cm. Results show a breakthrough maximum of 82 % of the input concentration in the column experiment and 58 % in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.
Am 20. November 2010 fand an der Universität Potsdam das 4. Herbsttreffen Patholinguistik statt. Die Konferenzreihe wird regelmäßig seit 2007 vom Verband für Patholinguistik e.V. (vpl) durchgeführt. Der vorliegende Tagungsband veröffentlicht die Hauptvorträge des Herbsttreffens zum Thema "Lesen lernen: Diagnostik und Therapie bei Störungen des Leseerwerbs". Des Weiteren sind die Beiträge promovierender bzw. promovierter PatholinguistInnen sowie der Posterpräsentationen enthalten.