### Refine

#### Year of publication

#### Document Type

- Preprint (24)
- Article (8)
- Postprint (7)
- Monograph/Edited Volume (4)
- Conference Proceeding (1)

#### Language

- English (41)
- German (2)
- Multiple languages (1)

#### Keywords

- cluster expansion (7)
- infinite-dimensional Brownian diffusion (5)
- reversible measure (5)
- local time (4)
- reciprocal class (4)
- Gibbs measure (3)
- Stochastic Differential Equation (3)
- duality formula (3)
- hard core potential (3)
- non-Markov drift (3)

#### Institute

- Institut für Mathematik (44)
- Extern (8)

We are interested in modeling the Darwinian evolution of a population described by two levels of biological parameters: individuals characterized by an heritable phenotypic trait submitted to mutation and natural selection and cells in these individuals influencing their ability to consume resources and to reproduce. Our models are rooted in the microscopic description of a random (discrete) population of individuals characterized by one or several adaptive traits and cells characterized by their type. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation and death for individuals and birth and death for cells. The interaction between individuals (resp. between cells) is described by a competition between individual traits (resp. between cell types). We are looking for tractable large population approximations. By combining various scalings on population size, birth and death rates and mutation step, the single microscopic model is shown to lead to contrasting nonlinear macroscopic limits of different nature: deterministic approximations, in the form of ordinary, integro- or partial differential equations, or probabilistic ones, like stochastic partial differential equations or superprocesses.

We are interested in modeling some two-level population dynamics, resulting from the interplay of ecological interactions and phenotypic variation of individuals (or hosts) and the evolution of cells (or parasites) of two types living in these individuals. The ecological parameters of the individual dynamics depend on the number of cells of each type contained by the individual and the cell dynamics depends on the trait of the invaded individual. Our models are rooted in the microscopic description of a random (discrete) population of individuals characterized by one or several adaptive traits and cells characterized by their type. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation and death for individuals and birth and death for cells. The interaction between individuals (resp. between cells) is described by a competition between individual traits (resp. between cell types). We look for tractable large population approximations. By combining various scalings on population size, birth and death rates and mutation step, the single microscopic model is shown to lead to contrasting nonlinear macroscopic limits of different nature: deterministic approximations, in the form of ordinary, integro- or partial differential equations, or probabilistic ones, like stochastic partial differential equations or superprocesses. The study of the long time behavior of these processes seems very hard and we only develop some simple cases enlightening the difficulties involved.

Transport Molecules play a crucial role for cell viability. Amongst others, linear motors transport cargos along rope-like structures from one location of the cell to another in a stochastic fashion. Thereby each step of the motor, either forwards or backwards, bridges a fixed distance. While moving along the rope the motor can also detach and is lost. We give here a mathematical formalization of such dynamics as a random process which is an extension of Random Walks, to which we add an absorbing state to model the detachment of the motor from the rope. We derive particular properties of such processes that have not been available before. Our results include description of the maximal distance reached from the starting point and the position from which detachment takes place. Finally, we apply our theoretical results to a concrete established model of the transport molecule Kinesin V.

Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke’s formula. En passant, it also allows us to gain quantitative results about stochastic domination for Poisson point processes under linear constraints. Since bridges of a pure jump Lévy process in Rd with a height a can be interpreted as a Poisson point process on space–time conditioned by pinning its first moment to a, our approach allows us to characterize bridges of Lévy processes by means of a functional equation. The latter result has two direct applications: First, we obtain a constructive and simple way to sample Lévy bridge dynamics; second, it allows us to estimate the number of jumps for such bridges. We finally show that our method remains valid for linearly perturbed Lévy processes like periodic Ornstein–Uhlenbeck processes driven by Lévy noise.

We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a strong summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.

We consider an infinite system of non-overlapping globules undergoing Brownian motions in R-3. The term globules means that the objects we are dealing with are spherical, but with a radius which is random and time-dependent. The dynamics is modelized by an infinite-dimensional stochastic differential equation with local time. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also find a class of reversible measures.