Refine
Year of publication
Document Type
- Preprint (24)
- Article (10)
- Postprint (7)
- Monograph/Edited Volume (4)
- Conference Proceeding (1)
- Part of Periodical (1)
Language
- English (42)
- German (4)
- Multiple languages (1)
Keywords
- cluster expansion (7)
- infinite-dimensional Brownian diffusion (5)
- reversible measure (5)
- local time (4)
- reciprocal class (4)
- Gibbs measure (3)
- Stochastic Differential Equation (3)
- duality formula (3)
- hard core potential (3)
- non-Markov drift (3)
Institute
We are interested in modeling the Darwinian evolution of a population described by two levels of biological parameters: individuals characterized by an heritable phenotypic trait submitted to mutation and natural selection and cells in these individuals influencing their ability to consume resources and to reproduce. Our models are rooted in the microscopic description of a random (discrete) population of individuals characterized by one or several adaptive traits and cells characterized by their type. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation and death for individuals and birth and death for cells. The interaction between individuals (resp. between cells) is described by a competition between individual traits (resp. between cell types). We are looking for tractable large population approximations. By combining various scalings on population size, birth and death rates and mutation step, the single microscopic model is shown to lead to contrasting nonlinear macroscopic limits of different nature: deterministic approximations, in the form of ordinary, integro- or partial differential equations, or probabilistic ones, like stochastic partial differential equations or superprocesses.
We are interested in modeling some two-level population dynamics, resulting from the interplay of ecological interactions and phenotypic variation of individuals (or hosts) and the evolution of cells (or parasites) of two types living in these individuals. The ecological parameters of the individual dynamics depend on the number of cells of each type contained by the individual and the cell dynamics depends on the trait of the invaded individual. Our models are rooted in the microscopic description of a random (discrete) population of individuals characterized by one or several adaptive traits and cells characterized by their type. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation and death for individuals and birth and death for cells. The interaction between individuals (resp. between cells) is described by a competition between individual traits (resp. between cell types). We look for tractable large population approximations. By combining various scalings on population size, birth and death rates and mutation step, the single microscopic model is shown to lead to contrasting nonlinear macroscopic limits of different nature: deterministic approximations, in the form of ordinary, integro- or partial differential equations, or probabilistic ones, like stochastic partial differential equations or superprocesses. The study of the long time behavior of these processes seems very hard and we only develop some simple cases enlightening the difficulties involved.
Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke’s formula. En passant, it also allows us to gain quantitative results about stochastic domination for Poisson point processes under linear constraints. Since bridges of a pure jump Lévy process in Rd with a height a can be interpreted as a Poisson point process on space–time conditioned by pinning its first moment to a, our approach allows us to characterize bridges of Lévy processes by means of a functional equation. The latter result has two direct applications: First, we obtain a constructive and simple way to sample Lévy bridge dynamics; second, it allows us to estimate the number of jumps for such bridges. We finally show that our method remains valid for linearly perturbed Lévy processes like periodic Ornstein–Uhlenbeck processes driven by Lévy noise.
We prove in this paper an existence result for infinite-dimensional stationary interactive Brownian diffusions. The interaction is supposed to be small in the norm ||.||∞ but otherwise is very general, being possibly non-regular and non-Markovian. Our method consists in using the characterization of such diffusions as space-time Gibbs fields so that we construct them by space-time cluster expansions in the small coupling parameter.
We consider a system of infinitely many hard balls in R<sup>d undergoing Brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential equation with a local time term. We prove that the set of all equilibrium measures, solution of a detailed balance equation, coincides with the set of canonical Gibbs measures associated to the hard core potential added to the smooth interaction potential.
The authors analyse different Gibbsian properties of interactive Brownian diffusions X indexed by the d-dimensional lattice. In the first part of the paper, these processes are characterized as Gibbs states on path spaces. In the second part of the paper, they study the Gibbsian character on R^{Z^d} of the law at time t of the infinite-dimensional diffusion X(t), when the initial law is Gibbsian. AMS Classifications: 60G15 , 60G60 , 60H10 , 60J60
We develop a cluster expansion in space-time for an infinite-dimensional system of interacting diffusions where the drift term of each diffusion depends on the whole past of the trajectory; these interacting diffusions arise when considering the Langevin dynamics of a ferromagnetic system submitted to a disordered external magnetic field.