### Refine

#### Keywords

- Lévy flights (2)
- Lévy walks (2)
- first-hitting time (2)
- first-passage time (2)
- Brownian motion (1)
- Fokker-Planck equations (1)
- Levy flights (1)
- anomalous diffusion (1)
- diffusion (1)
- first arrival (1)

Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations
(2015)

Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations (FRs). As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super-and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work FR, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and FRs to experiments.

We study transient work fluctuation relations (FRs) for Gaussian stochastic systems generating anomalous diffusion. For this purpose we use a Langevin approach by employing two different types of additive noise: (i) internal noise where the fluctuation dissipation relation of the second kind (FDR II) holds, and (ii) external noise without FDR II. For internal noise we demonstrate that the existence of FDR II implies the existence of the fluctuation dissipation relation of the first kind (FDR I), which in turn leads to conventional (normal) forms of transient work FRs. For systems driven by external noise we obtain violations of normal FRs, which we call anomalous FRs. We derive them in the long-time limit and demonstrate the existence of logarithmic factors in FRs for intermediate times. We also outline possible experimental verifications.

For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.

A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economically of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent alpha < 1, by itself implying zero probability of hitting a point on a line, leads to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent a of the Levy flight component.

We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump length distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.