Refine
Document Type
- Article (10)
- Monograph/Edited Volume (2)
- Postprint (1)
Keywords
- Reflexion (5)
- Lehrkräftebildung (3)
- Feedback (2)
- NLP (2)
- literature review (2)
- machine learning (2)
- pedagogical content knowledge (PCK) (2)
- pedagogical reasoning (2)
- refined consensus model (RCM) (2)
- reflexion (2)
Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion.
Reflexion ist eine Schlüsselkategorie für die professionelle Entwicklung von Lehrkräften, welche als Ausbildungsziel in den Bildungsstandards für die Lehrkräftebildung verankert ist. Eine Verstetigung universitär geprägter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die Stärkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasenübergreifende Herausforderung der Lehrkräftebildung zu sein, die es zu bewältigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkräftebildung sind eine theoretische Schärfung des Konzeptes „Reflexive Professionalisierung“ und der Austausch über Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkräftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkräftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkräftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkräftebildung werden zukünftige Herausforderungen identifiziert und Lösungsansätze herausgearbeitet.
Science education researchers have developed a refined understanding of the structure of science teachers’ pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies’ approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.
Computer-based analysis of preservice teachers' written reflections could enable educational scholars to design personalized and scalable intervention measures to support reflective writing. Algorithms and technologies in the domain of research related to artificial intelligence have been found to be useful in many tasks related to reflective writing analytics such as classification of text segments. However, mostly shallow learning algorithms have been employed so far. This study explores to what extent deep learning approaches can improve classification performance for segments of written reflections. To do so, a pretrained language model (BERT) was utilized to classify segments of preservice physics teachers' written reflections according to elements in a reflection-supporting model. Since BERT has been found to advance performance in many tasks, it was hypothesized to enhance classification performance for written reflections as well. We also compared the performance of BERT with other deep learning architectures and examined conditions for best performance. We found that BERT outperformed the other deep learning architectures and previously reported performances with shallow learning algorithms for classification of segments of reflective writing. BERT starts to outperform the other models when trained on about 20 to 30% of the training data. Furthermore, attribution analyses for inputs yielded insights into important features for BERT's classification decisions. Our study indicates that pretrained language models such as BERT can boost performance for language-related tasks in educational contexts such as classification.
Science education researchers have developed a refined understanding of the structure of science teachers’ pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies’ approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.
Schulpraktische Phasen stellen eine bedeutende praxisnahe Lerngelegenheit im Lehramtsstudium dar, da sie Raum für umfangreiche Reflexionen der eigenen Lernerfahrung bieten. Das im Studium erworbene theoretisch-formale Wissen steht hierbei dem praktischen Wissen und Können gegenüber. Mit der professionellen Entwicklung im Referendariat, besonders im Kompetenzbereich des Unterrichtens, kann geschlussfolgert werden, dass sich eine Reflexion über eher fachliche Aspekte unter den Studierenden im Referendariat auf eine Reflexion über eher überfachliche und pädagogische Aspekte weitet. Infolge der Analyse von N = 55 schriftlichen Fremdreflexionen von angehenden Physiklehrkräften aus Studium und Referendariat konnte diese Hypothese für den Bereich der Unterrichtsanalyse und -reflexion unterstützt werden. Weiter wurde aus der Videovignette ein Workshopangebot für Lehrkräfte der zweiten und dritten Phase der Lehrkräftebildung entwickelt, erprobt und evaluiert.
Für die Entwicklung professioneller Handlungskompetenzen angehender Lehrkräfte stellt die Unterrichtsreflexion ein wichtiges Instrument dar, um Theoriewissen und Praxiserfahrungen in Beziehung zu setzen. Die Auswertung von Unterrichtsreflexionen und eine entsprechende Rückmeldung stellt Forschende und Dozierende allerdings vor praktische wie theoretische Herausforderungen. Im Kontext der Forschung zu Künstlicher Intelligenz (KI) entwickelte Methoden bieten hier neue Potenziale. Der Beitrag stellt überblicksartig zwei Teilstudien vor, die mit Hilfe von KI-Methoden wie dem maschinellen Lernen untersuchen, inwieweit eine Auswertung von Unterrichtsreflexionen angehender Physiklehrkräfte auf Basis eines theoretisch abgeleiteten Reflexionsmodells und die automatisierte Rückmeldung hierzu möglich sind. Dabei wurden unterschiedliche Ansätze des maschinellen Lernens verwendet, um modellbasierte Klassifikation und Exploration von Themen in Unterrichtsreflexionen umzusetzen. Die Genauigkeit der Ergebnisse wurde vor allem durch sog. Große Sprachmodelle gesteigert, die auch den Transfer auf andere Standorte und Fächer ermöglichen. Für die fachdidaktische Forschung bedeuten sie jedoch wiederum neue Herausforderungen, wie etwa systematische Verzerrungen und Intransparenz von Entscheidungen. Dennoch empfehlen wir, die Potenziale der KI-basierten Methoden gründlicher zu erforschen und konsequent in der Praxis (etwa in Form von Webanwendungen) zu implementieren.
Algorithmen als Dozierende?
(2023)
Auf maschinellem Lernen basierende Tools haben schon längst Einzug in unseren Alltag gefunden und so konnten auch in der Lehrkräftebildung erste Anwendungen entwickelt, erprobt und evaluiert werden. Im Teilprojekt Physikdidaktik des Schwerpunktes 2 „Schulpraktische Studien“ wurden auf Basis eines Rahmenmodells für Reflexion (Nowak et al., 2019) automatisierte Analysemethoden (Wulff et al., 2020) entwickelt und fanden Einzug in universitäre fachdidaktische Lehre (Mientus et al., 2021a). Mit dem Projekt konnten Potenziale KI-basierter Unterstützung aufgezeigt und verstetigt sowie spezifische Herausforderungen identifiziert werden. Dieser Beitrag skizziert ausgewählte Anwendungsmöglichkeiten und weiterführende Forschungen unter dem Gesichtspunkt der Akzeptanz computerunterstützter Lehre.
Eine beständige Weiterentwicklung der eigenen pädagogischen und fachdidaktischen Praxis stellt ein zentrales Leitbild für die Arbeit von Lehrkräften dar. Damit dieses Leitbild umgesetzt werden kann, wird angenommen, dass Lehrkräfte ihre eigene Praxis kontinuierlich reflektieren müssen. Reflektieren angehende Lehrkräfte im Kontext von Lehrveranstaltungen, hat dies einerseits Elemente einer Prüfungssituation und andererseits Elemente einer Erkenntnisgewinnungssituation. Für beide Situationen spielen Emotionen eine wichtige Rolle. So können sich beispielsweise negative und deaktivierende Emotionen hinderlich auf den (Lern-)Erfolg auswirken. Allerdings ist bislang wenig darüber bekannt, welche Emotionen beim Reflektieren von videobasierten Fallanalysen auftreten und inwieweit individualisiertes Feedback hier eine Rolle spielt. Es wird daher eine Untersuchung zu den Emotionen von N = 15 Lehramtsstudierenden der Physik zu mehreren Reflexionsanlässen vorgestellt. Hierbei wurde über verschiedene Reflexionsanlässe hinweg Feedback gegeben. Diskutiert werden Implikationen für die Gestaltung von Reflexionsanlässen in der Lehrkräftebildung sowie Perspektiven für zukünftige Forschung.
Reflecting in written form on one's teaching enactments has been considered a facilitator for teachers' professional growth in university-based preservice teacher education. Writing a structured reflection can be facilitated through external feedback. However, researchers noted that feedback in preservice teacher education often relies on holistic, rather than more content-based, analytic feedback because educators oftentimes lack resources (e.g., time) to provide more analytic feedback. To overcome this impediment to feedback for written reflection, advances in computer technology can be of use. Hence, this study sought to utilize techniques of natural language processing and machine learning to train a computer-based classifier that classifies preservice physics teachers' written reflections on their teaching enactments in a German university teacher education program. To do so, a reflection model was adapted to physics education. It was then tested to what extent the computer-based classifier could accurately classify the elements of the reflection model in segments of preservice physics teachers' written reflections. Multinomial logistic regression using word count as a predictor was found to yield acceptable average human-computer agreement (F1-score on held-out test dataset of 0.56) so that it might fuel further development towards an automated feedback tool that supplements existing holistic feedback for written reflections with data-based, analytic feedback.