Refine
Document Type
- Monograph/Edited Volume (4)
- Other (3)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Language
- English (9)
Is part of the Bibliography
- yes (9)
Keywords
- Cloud Computing (5)
- Forschungsprojekte (5)
- Future SOC Lab (5)
- In-Memory Technologie (5)
- Multicore Architekturen (5)
- maschinelles Lernen (5)
- artifical intelligence (4)
- cloud computing (4)
- künstliche Intelligenz (4)
- machine learning (4)
Bridging the Gap
(2019)
The recent restructuring of the electricity grid (i.e., smart grid) introduces a number of challenges for today's large-scale computing systems. To operate reliable and efficient, computing systems must adhere not only to technical limits (i.e., thermal constraints) but they must also reduce operating costs, for example, by increasing their energy efficiency. Efforts to improve the energy efficiency, however, are often hampered by inflexible software components that hardly adapt to underlying hardware characteristics. In this paper, we propose an approach to bridge the gap between inflexible software and heterogeneous hardware architectures. Our proposal introduces adaptive software components that dynamically adapt to heterogeneous processing units (i.e., accelerators) during runtime to improve the energy efficiency of computing systems.
The overhead of moving data is the major limiting factor in todays hardware, especially in heterogeneous systems where data needs to be transferred frequently between host and accelerator memory. With the increasing availability of hardware-based compression facilities in modern computer architectures, this paper investigates the potential of hardware-accelerated I/O Link Compression as a promising approach to reduce data volumes and transfer time, thus improving the overall efficiency of accelerators in heterogeneous systems. Our considerations are focused on On-the-Fly compression in both Single-Node and Scale-Out deployments. Based on a theoretical analysis, this paper demonstrates the feasibility of hardware-accelerated On-the-Fly I/O Link Compression for many workloads in a Scale-Out scenario, and for some even in a Single-Node scenario. These findings are confirmed in a preliminary evaluation using software-and hardware-based implementations of the 842 compression algorithm.
Cost models play an important role for the efficient implementation of software systems. These models can be embedded in operating systems and execution environments to optimize execution at run time. Even though non-uniform memory access (NUMA) architectures are dominating today's server landscape, there is still a lack of parallel cost models that represent NUMA system sufficiently. Therefore, the existing NUMA models are analyzed, and a two-step performance assessment strategy is proposed that incorporates low-level hardware counters as performance indicators. To support the two-step strategy, multiple tools are developed, all accumulating and enriching specific hardware event counter information, to explore, measure, and visualize these low-overhead performance indicators. The tools are showcased and discussed alongside specific experiments in the realm of performance assessment.
The heterogeneity of today's state-of-the-art computer architectures is confronting application developers with an immense degree of complexity which results from two major challenges. First, developers need to acquire profound knowledge about the programming models or the interaction models associated with each type of heterogeneous system resource to make efficient use thereof. Second, developers must take into account that heterogeneous system resources always need to exchange data with each other in order to work on a problem together. However, this data exchange is always associated with a certain amount of overhead, which is why the amounts of data exchanged should be kept as low as possible.
This thesis proposes three programming abstractions to lessen the burdens imposed by these major challenges with the goal of making heterogeneous system resources accessible to a wider range of application developers. The lib842 compression library provides the first method for accessing the compression and decompression facilities of the NX-842 on-chip compression accelerator available in IBM Power CPUs from user space applications running on Linux. Addressing application development of scale-out GPU workloads, the CloudCL framework makes the resources of GPU clusters more accessible by hiding many aspects of distributed computing while enabling application developers to focus on the aspects of the data parallel programming model associated with GPUs. Furthermore, CloudCL is augmented with transparent data compression facilities based on the lib842 library in order to improve the efficiency of data transfers among cluster nodes. The improved data transfer efficiency provided by the integration of transparent data compression yields performance improvements ranging between 1.11x and 2.07x across four data-intensive scale-out GPU workloads. To investigate the impact of programming abstractions for data placement in NUMA systems, a comprehensive evaluation of the PGASUS framework for NUMA-aware C++ application development is conducted. On a wide range of test systems, the evaluation demonstrates that PGASUS does not only improve the developer experience across all workloads, but that it is also capable of outperforming NUMA-agnostic implementations with average performance improvements of 1.56x.
Based on these programming abstractions, this thesis demonstrates that by providing a sufficient degree of abstraction, the accessibility of heterogeneous system resources can be improved for application developers without occluding performance-critical properties of the underlying hardware.
HPI Future SOC Lab
(2015)
Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie.
Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2015 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 15. April 2015 und 4. November 2015 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.
HPI Future SOC Lab
(2024)
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2020. Selected projects have presented their results on April 21st and November 10th 2020 at the Future SOC Lab Day events.