Refine
Year of publication
Document Type
- Article (6)
- Other (5)
- Monograph/Edited Volume (4)
- Doctoral Thesis (1)
Language
- English (16)
Is part of the Bibliography
- yes (16)
Keywords
- Cloud Computing (2)
- Forschungsprojekte (2)
- Future SOC Lab (2)
- In-Memory Technologie (2)
- Multicore Architekturen (2)
- artifical intelligence (2)
- cloud computing (2)
- in-memory technology (2)
- künstliche Intelligenz (2)
- machine learning (2)
E-commerce marketplaces are highly dynamic with constant competition. While this competition is challenging for many merchants, it also provides plenty of opportunities, e.g., by allowing them to automatically adjust prices in order to react to changing market situations. For practitioners however, testing automated pricing strategies is time-consuming and potentially hazardously when done in production. Researchers, on the other side, struggle to study how pricing strategies interact under heavy competition. As a consequence, we built an open continuous time framework to simulate dynamic pricing competition called Price Wars. The microservice-based architecture provides a scalable platform for large competitions with dozens of merchants and a large random stream of consumers. Our platform stores each event in a distributed log. This allows to provide different performance measures enabling users to compare profit and revenue of various repricing strategies in real-time. For researchers, price trajectories are shown which ease evaluating mutual price reactions of competing strategies. Furthermore, merchants can access historical marketplace data and apply machine learning. By providing a set of customizable, artificial merchants, users can easily simulate both simple rule-based strategies as well as sophisticated data-driven strategies using demand learning to optimize their pricing strategies.
Merchants on modern e-commerce platforms face a highly competitive environment. They compete against each other using automated dynamic pricing and ordering strategies. Successfully managing both inventory levels as well as offer prices is a challenging task as (i) demand is uncertain, (ii) competitors strategically interact, and (iii) optimized pricing and ordering decisions are mutually dependent. We show how to derive optimized data-driven pricing and ordering strategies which are based on demand learning techniques and efficient dynamic optimization models. We verify the superior performance of our self-adaptive strategies by comparing them to different rule-based as well as data-driven strategies in duopoly and oligopoly settings. Further, to study and to optimize joint dynamic ordering and pricing strategies on online marketplaces, we built an interactive simulation platform. To be both flexible and scalable, the platform has a microservice-based architecture and allows handling dozens of competing merchants and streams of consumers with configurable characteristics.
1. Design and Composition of 3D Geoinformation Services Benjamin Hagedorn 2. Operating System Abstractions for Service-Based Systems Michael Schöbel 3. A Task-oriented Approach to User-centered Design of Service-Based Enterprise Applications Matthias Uflacker 4. A Framework for Adaptive Transport in Service- Oriented Systems based on Performance Prediction Flavius Copaciu 5. Asynchronicity and Loose Coupling in Service-Oriented Architectures Nikola Milanovic
Monitoring virtual team collaboration : methods, applications and experiences in engineering design
(2010)
Computational analysis of virtual team collaboration in teh early stages of engineering design
(2010)
Industry 4.0 and the Internet of Things are recent developments that have lead to the creation of new kinds of manufacturing data. Linking this new kind of sensor data to traditional business information is crucial for enterprises to take advantage of the data’s full potential. In this paper, we present a demo which allows experiencing this data integration, both vertically between technical and business contexts and horizontally along the value chain. The tool simulates a manufacturing company, continuously producing both business and sensor data, and supports issuing ad-hoc queries that answer specific questions related to the business. In order to adapt to different environments, users can configure sensor characteristics to their needs.
The advance of high-throughput RNA-Sequencing techniques enables researchers to analyze the complete gene activity in particular cells. From the insights of such analyses, researchers can identify disease-specific expression profiles, thus understand complex diseases like cancer, and eventually develop effective measures for diagnosis and treatment. The high dimensionality of gene expression data poses challenges to its computational analysis, which is addressed with measures of gene selection. Traditional gene selection approaches base their findings on statistical analyses of the actual expression levels, which implies several drawbacks when it comes to accurately identifying the underlying biological processes. In turn, integrative approaches include curated information on biological processes from external knowledge bases during gene selection, which promises to lead to better interpretability and improved predictive performance. Our work compares the performance of traditional and integrative gene selection approaches. Moreover, we propose a straightforward approach to integrate external knowledge with traditional gene selection approaches. We introduce a framework enabling the automatic external knowledge integration, gene selection, and evaluation. Evaluation results prove our framework to be a useful tool for evaluation and show that integration of external knowledge improves overall analysis results.