Refine
Has Fulltext
- no (15)
Year of publication
Document Type
- Article (14)
- Monograph/Edited Volume (1)
Is part of the Bibliography
- yes (15)
Keywords
- ISM: individual objects (RX J1713.7-3946, G347.3-0.5) (1)
- animal movement (1)
- cosmic rays (1)
- gamma rays: ISM (1)
- kernel density estimation (1)
- local convex hull (1)
- minimum convex polygon (1)
- range distribution (1)
- space use (1)
- telemetry (1)
Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
(2017)
We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated‐Gaussian reference function [AKDE], Silverman's rule of thumb, and least squares cross‐validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half‐sample cross‐validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ( N̂ area
) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID‐based estimates by a mean factor of 2. The median number of cross‐validated locations included in the hold‐out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing N̂ area. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small N̂ area. While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an N̂ area >1,000, where 30% had an N̂ area <30. In this frequently encountered scenario of small N̂ area, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
Moving in the Anthropocene
(2018)
Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.