Refine
Document Type
- Article (1)
- Conference Proceeding (1)
- Other (1)
Language
- English (3)
Keywords
- MOOC (1)
- digital education (1)
- e-learning (1)
- experience (1)
- higher education (1)
- microcredential (1)
- online course creation (1)
- online course design (1)
EMOOCs 2021
(2021)
From June 22 to June 24, 2021, Hasso Plattner Institute, Potsdam, hosted the seventh European MOOC Stakeholder Summit (EMOOCs 2021) together with the eighth ACM Learning@Scale Conference.
Due to the COVID-19 situation, the conference was held fully online.
The boost in digital education worldwide as a result of the pandemic was also one of the main topics of this year’s EMOOCs. All institutions of learning have been forced to transform and redesign their educational methods, moving from traditional models to hybrid or completely online models at scale. The learnings, derived from practical experience and research, have been explored in EMOOCs 2021 in six tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference’s Experience Track, the Policy Track, the Business Track, the International Track, and the Workshops.
TransPipe
(2021)
Online learning environments, such as Massive Open Online Courses (MOOCs), often rely on videos as a major component to convey knowledge. However, these videos exclude potential participants who do not understand the lecturer’s language, regardless of whether that is due to language unfamiliarity or aural handicaps. Subtitles and/or interactive transcripts solve this issue, ease navigation based on the content, and enable indexing and retrieval by search engines. Although there are several automated speech-to-text converters and translation tools, their quality varies and the process of integrating them can be quite tedious. Thus, in practice, many videos on MOOC platforms only receive subtitles after the course is already finished (if at all) due to a lack of resources. This work describes an approach to tackle this issue by providing a dedicated tool, which is closing this gap between MOOC platforms and transcription and translation tools and offering a simple workflow that can easily be handled by users with a less technical background. The proposed method is designed and evaluated by qualitative interviews with three major MOOC providers.
LoANs
(2019)
Recently, deep neural networks have achieved remarkable performance on the task of object detection and recognition. The reason for this success is mainly grounded in the availability of large scale, fully annotated datasets, but the creation of such a dataset is a complicated and costly task. In this paper, we propose a novel method for weakly supervised object detection that simplifies the process of gathering data for training an object detector. We train an ensemble of two models that work together in a student-teacher fashion. Our student (localizer) is a model that learns to localize an object, the teacher (assessor) assesses the quality of the localization and provides feedback to the student. The student uses this feedback to learn how to localize objects and is thus entirely supervised by the teacher, as we are using no labels for training the localizer. In our experiments, we show that our model is very robust to noise and reaches competitive performance compared to a state-of-the-art fully supervised approach. We also show the simplicity of creating a new dataset, based on a few videos (e.g. downloaded from YouTube) and artificially generated data.