Refine
Document Type
- Article (1)
- Monograph/Edited Volume (1)
- Doctoral Thesis (1)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Keywords
- Causal inference (1)
- Causal structure learning (1)
- Cloud Computing (1)
- Fertigung (1)
- Forschungsprojekte (1)
- Future SOC Lab (1)
- In-Memory Technologie (1)
- In-Memory technology (1)
- Künstliche Intelligenz (1)
- Log data (1)
Institute
Knowledge about causal structures is crucial for decision support in various domains. For example, in discrete manufacturing, identifying the root causes of failures and quality deviations that interrupt the highly automated production process requires causal structural knowledge. However, in practice, root cause analysis is usually built upon individual expert knowledge about associative relationships. But, "correlation does not imply causation", and misinterpreting associations often leads to incorrect conclusions. Recent developments in methods for causal discovery from observational data have opened the opportunity for a data-driven examination. Despite its potential for data-driven decision support, omnipresent challenges impede causal discovery in real-world scenarios. In this thesis, we make a threefold contribution to improving causal discovery in practice.
(1) The growing interest in causal discovery has led to a broad spectrum of methods with specific assumptions on the data and various implementations. Hence, application in practice requires careful consideration of existing methods, which becomes laborious when dealing with various parameters, assumptions, and implementations in different programming languages. Additionally, evaluation is challenging due to the lack of ground truth in practice and limited benchmark data that reflect real-world data characteristics.
To address these issues, we present a platform-independent modular pipeline for causal discovery and a ground truth framework for synthetic data generation that provides comprehensive evaluation opportunities, e.g., to examine the accuracy of causal discovery methods in case of inappropriate assumptions.
(2) Applying constraint-based methods for causal discovery requires selecting a conditional independence (CI) test, which is particularly challenging in mixed discrete-continuous data omnipresent in many real-world scenarios. In this context, inappropriate assumptions on the data or the commonly applied discretization of continuous variables reduce the accuracy of CI decisions, leading to incorrect causal structures.
Therefore, we contribute a non-parametric CI test leveraging k-nearest neighbors methods and prove its statistical validity and power in mixed discrete-continuous data, as well as the asymptotic consistency when used in constraint-based causal discovery. An extensive evaluation of synthetic and real-world data shows that the proposed CI test outperforms state-of-the-art approaches in the accuracy of CI testing and causal discovery, particularly in settings with low sample sizes.
(3) To show the applicability and opportunities of causal discovery in practice, we examine our contributions in real-world discrete manufacturing use cases. For example, we showcase how causal structural knowledge helps to understand unforeseen production downtimes or adds decision support in case of failures and quality deviations in automotive body shop assembly lines.
In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.