Refine
Document Type
- Article (1)
- Monograph/Edited Volume (1)
Is part of the Bibliography
- yes (2)
Keywords
Institute
Dieses Sonderheft der Schriftenreihe des Lehrstuhls für Public und Nonprofit Management präsentiert Ergebnisse eines studentischen Beratungsprojekts aus dem Wintersemester 2018/19. Dabei wurde eine Vision für eine digitalisierte öffentliche Verwaltung entworfen. Unter Anwendung von Szenariomethoden wurden Zukunftsszenarien entwickelt und getestet, die sich entweder mit Bürger*innen und Unternehmen als Kund*innen der Verwaltung, den öffentlich Beschäftigen oder der Aufbau- und Ablauforganisation in der Verwaltung beschäftigen.
Aims: 1-Methyl-4-phenyl-tetrahydropyridine (MPTP) is among the most widely used neurotoxins for inducing experimental parkinsonism. MPTP causes parkinsonian symptoms in mice, primates, and humans by killing a subpopulation of dopaminergic neurons. Extrapolations of data obtained using MPTP-based parkinsonism models to human disease are common; however, the precise mechanism by which MPTP is converted into its active neurotoxic metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), has not been fully elucidated. In this study, we aimed to address two unanswered questions related to MPTP toxicology: (1) Why are MPTP-converting astrocytes largely spared from toxicity? (2) How does MPP+ reach the extracellular space? Results: In MPTP-treated astrocytes, we discovered that the membrane-impermeable MPP+, which is generally assumed to be formed inside astrocytes, is almost exclusively detected outside of these cells. Instead of a transporter-mediated export, we found that the intermediate, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), and/or its uncharged conjugate base passively diffused across cell membranes and that MPP+ was formed predominately by the extracellular oxidation of MPDP+ into MPP+. This nonenzymatic extracellular conversion of MPDP+ was promoted by O-2, a more alkaline pH, and dopamine autoxidation products. Innovation and Conclusion: Our data indicate that MPTP metabolism is compartmentalized between intracellular and extracellular environments, explain the absence of toxicity in MPTP-converting astrocytes, and provide a rationale for the preferential formation of MPP+ in the extracellular space. The mechanism of transporter-independent extracellular MPP+ formation described here indicates that extracellular genesis of MPP+ from MPDP is a necessary prerequisite for the selective uptake of this toxin by catecholaminergic neurons.