### Refine

We consider the problem of representing arbitrary preferences in causal reasoning and planning systems. In planning, a preference may be seen as a goal or constraint that is desirable, but not necessary, to satisfy. To begin, we define a very general query language for histories, or interleaved sequences of world states and actions. Based on this, we specify a second language in which preferences are defined. A single preference defines a binary relation on histories, indicating that one history is preferred to the other. From this, one can define global preference orderings on the set of histories, the maximal elements of which are the preferred histories. The approach is very general and flexible; thus it constitutes a base language in terms of which higher-level preferences may be defined. To this end, we investigate two fundamental types of preferences that we call choice and temporal preferences. We consider concrete strategies for these types of preferences and encode them in terms of our framework. We suggest how to express aggregates in the approach, allowing, e.g. the expression of a preference for histories with lowest total action costs. Last, our approach can be used to express other approaches and so serves as a common framework in which such approaches can be expressed and compared. We illustrate this by indicating how an approach due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3.

An Extended Query language for action languages (and its application to aggregates and preferences)
(2006)

Reiter's default logic is one of the best known and most studied of the approaches to nonmonotonic reasoning. Several variants of default logic have subsequently been proposed to give systems with properties differing from the original. In this paper, we examine the relationship between default logic and its major variants. We accomplish this by translating a default theory under a variant interpretation into a second default theory, under the original Reiter semantics, wherein the variant interpretation is respected. That is, in each case we show that, given an extension of a translated theory, one may extract an extension of the original variant default logic theory. We show how constrained, rational, justified, and cumulative default logic can be expressed in Reiter's default logic. As well, we show how Reiter's default logic can be expressed in rational default logic. From this, we suggest that any such variant can be similarly treated. Consequently, we provide a unification of default logics, showing how the original formulation of default logic may express its variants. Moreover, the translations clearly express the relationships between alternative approaches to default logic. The translations themselves are shown to generally have good properties. Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous, in that for any of these variants of default logic, we can exactly mimic the behaviour of a variant in standard default logic. As well, the translations lend insight into means of classifying the expressive power of default logic variants; specifically we suggest that the property of semi-monotonicity represents a division with respect to expressibility, whereas regularity and cumulativity do not