Refine
Year of publication
Document Type
- Article (34)
- Postprint (15)
- Other (2)
- Part of a Book (1)
- Habilitation Thesis (1)
Is part of the Bibliography
- yes (53)
Keywords
- Algorithm (2)
- Band (2)
- Kwajalein (2)
- Methodology (2)
- Nordic catchments (2)
- Reflectivity (2)
- TELEMAC-2D model (2)
- Uncertainties (2)
- Urban pluvial flood susceptibility (2)
- Weather (2)
Hydrologic modelers often need to know which method of quantitative precipitation estimation (QPE) is best suited for a particular catchment. Traditionally, QPE methods are verified and benchmarked against independent rain gauge observations. However, the lack of spatial representativeness limits the value of such a procedure. Alternatively, one could drive a hydrological model with different QPE products and choose the one which best reproduces observed runoff. Unfortunately, the calibration of conceptual model parameters might conceal actual differences between the QPEs. To avoid such effects, we abandoned the idea of determining optimum parameter sets for all QPE being compared. Instead, we carry out a large number of runoff simulations, confronting each QPE with a common set of random parameters. By evaluating the goodness-of-fit of all simulations, we obtain information on whether the quality of competing QPE methods is significantly different. This knowledge is inferred exactly at the scale of interest-the catchment scale. We use synthetic data to investigate the ability of this procedure to distinguish a truly superior QPE from an inferior one. We find that the procedure is prone to failure in the case of linear systems. However, we show evidence that in realistic (nonlinear) settings, the method can provide useful results even in the presence of moderate errors in model structure and streamflow observations. In a real-world case study on a small mountainous catchment, we demonstrate the ability of the verification procedure to reveal additional insights as compared to a conventional cross validation approach.
In a recent BAMS article, it is argued that community-based Open Source Software (OSS) could foster scientific progress in weather radar research, and make weather radar software more affordable, flexible, transparent, sustainable, and interoperable.Nevertheless, it can be challenging for potential developers and users to realize these benefits: tools are often cumbersome to install; different operating systems may have particular issues, or may not be supported at all; and many tools have steep learning curves.To overcome some of these barriers, we present an open, community-based virtual machine (VM). This VM can be run on any operating system, and guarantees reproducibility of results across platforms. It contains a suite of independent OSS weather radar tools (BALTRAD, Py-ART, wradlib, RSL, and Radx), and a scientific Python stack. Furthermore, it features a suite of recipes that work out of the box and provide guidance on how to use the different OSS tools alone and together. The code to build the VM from source is hosted on GitHub, which allows the VM to grow with its community.We argue that the VM presents another step toward Open (Weather Radar) Science. It can be used as a quick way to get started, for teaching, or for benchmarking and combining different tools. It can foster the idea of reproducible research in scientific publishing. Being scalable and extendable, it might even allow for real-time data processing.We expect the VM to catalyze progress toward interoperability, and to lower the barrier for new users and developers, thus extending the weather radar community and user base.
The potential of weather radar observations for hydrological and meteorological research and applications is undisputed, particularly with increasing world-wide radar coverage. However, several barriers impede the use of weather radar data. These barriers are of both scientific and technical nature. The former refers to inherent measurement errors and artefacts, the latter to aspects such as reading specific data formats, geo-referencing, visualisation. The radar processing library wradlib is intended to lower these barriers by providing a free and open source tool for the most important steps in processing weather radar data for hydro-meteorological and hydrological applications. Moreover, the community-based development approach of wradlib allows scientists to share their knowledge about efficient processing algorithms and to make this knowledge available to the weather radar community in a transparent, structured and well-documented way.
From 6 to 9 August 2012, intense rainfall hit the northern Philippines, causing massive floods in Metropolitan Manila and nearby regions. Local rain gauges recorded almost 1000mm within this period. However, the recently installed Philippine network of weather radars suggests that Metropolitan Manila might have escaped a potentially bigger flood just by a whisker, since the centre of mass of accumulated rainfall was located over Manila Bay. A shift of this centre by no more than 20 km could have resulted in a flood disaster far worse than what occurred during Typhoon Ketsana in September 2009.
Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e. g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model.
Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications.
In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students reveal benefits, such as better orientation in the study area, higher interactivity with the data, improved discourse among students and enhanced motivation through immersive 3D geovisualization. This suggests that immersive 3D visualization can effectively be used in higher education and that 3D CAVE settings enhance interactive learning between students.
Rainfall-induced attenuation is a major source of underestimation for radar-based precipitation estimation at C-band. Unconstrained gate-by-gate correction procedures are known to be inherently unstable and thus not suited for unsupervised attenuation correction. In this study, we evaluate three different procedures to constrain gate-by-gate attenuation correction using reflectivity as the only input. These procedures are benchmarked against rainfall estimates from uncorrected radar data, using six years of radar observations from the single-polarized C-band radar in South-West Germany. The precipitation estimation error is obtained by comparing the radar-based estimates to rain gauge observations. All attenuation correction procedures benchmarked in this study lead to an effective improvement of precipitation estimation. The first method caps the corrections if the rain intensity increase exceeds a factor of two. The second method decreases the parameters of the attenuation correction iteratively for every radar beam calculation until attaining a stability criterion. The second method outperforms the first method and leads to a consistent distribution of path-integrated attenuation along the radar beam. As a third method, we propose a slight modification of Kraemer's approach which allows users to exert better control over attenuation correction by introducing an additional constraint that prevents unplausible corrections in cases of dramatic signal losses.
Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage.
The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.