### Refine

#### Language

- English (26)

#### Is part of the Bibliography

- yes (26)

#### Keywords

- diffusion (13)
- first passage time (5)
- random diffusivity (4)
- aspect ratio (3)
- cylindrical geometry (3)
- protein search (3)
- Brownian motion (2)
- anomalous diffusion (2)
- approximate methods (2)
- exact results (2)

#### Institute

We study the probability density function (PDF) of the first-reaction times between a diffusive ligand and a membrane-bound, immobile imperfect target region in a restricted 'onion-shell' geometry bounded by two nested membranes of arbitrary shapes. For such a setting, encountered in diverse molecular signal transduction pathways or in the narrow escape problem with additional steric constraints, we derive an exact spectral form of the PDF, as well as present its approximate form calculated by help of the so-called self-consistent approximation. For a particular case when the nested domains are concentric spheres, we get a fully explicit form of the approximated PDF, assess the accuracy of this approximation, and discuss various facets of the obtained distributions. Our results can be straightforwardly applied to describe the PDF of the terminal reaction event in multi-stage signal transduction processes.

We consider a sequential cascade of molecular first-reaction events towards a terminal reaction centre in which each reaction step is controlled by diffusive motion of the particles. The model studied here represents a typical reaction setting encountered in diverse molecular biology systems, in which, e.g. a signal transduction proceeds via a series of consecutive 'messengers': the first messenger has to find its respective immobile target site triggering a launch of the second messenger, the second messenger seeks its own target site and provokes a launch of the third messenger and so on, resembling a relay race in human competitions. For such a molecular relay race taking place in infinite one-, two- and three-dimensional systems, we find exact expressions for the probability density function of the time instant of the terminal reaction event, conditioned on preceding successful reaction events on an ordered array of target sites. The obtained expressions pertain to the most general conditions: number of intermediate stages and the corresponding diffusion coefficients, the sizes of the target sites, the distances between them, as well as their reactivities are arbitrary.

We consider the first-passage problem for N identical independent particles that are initially released uniformly in a finite domain Ω and then diffuse toward a reactive area Γ, which can be part of the outer boundary of Ω or a reaction centre in the interior of Ω. For both cases of perfect and partial reactions, we obtain the explicit formulas for the first two moments of the fastest first-passage time (fFPT), i.e., the time when the first out of the N particles reacts with Γ. Moreover, we investigate the full probability density of the fFPT. We discuss a significant role of the initial condition in the scaling of the average fFPT with the particle number N, namely, a much stronger dependence (1/N and 1/N² for partially and perfectly reactive targets, respectively), in contrast to the well known inverse-logarithmic behaviour found when all particles are released from the same fixed point. We combine analytic solutions with scaling arguments and stochastic simulations to rationalise our results, which open new perspectives for studying the relevance of multiple searchers in various situations of molecular reactions, in particular, in living cells.

Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations.

We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic‘diffusivity’, defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(−Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process.