### Refine

#### Language

- English (24)

#### Is part of the Bibliography

- yes (24)

#### Keywords

- diffusion (11)
- first passage time (5)
- random diffusivity (4)
- aspect ratio (3)
- cylindrical geometry (3)
- protein search (3)
- Brownian motion (2)
- anomalous diffusion (2)
- exact results (2)
- extremal values (2)

#### Institute

We consider a sequential cascade of molecular first-reaction events towards a terminal reaction centre in which each reaction step is controlled by diffusive motion of the particles. The model studied here represents a typical reaction setting encountered in diverse molecular biology systems, in which, e.g. a signal transduction proceeds via a series of consecutive 'messengers': the first messenger has to find its respective immobile target site triggering a launch of the second messenger, the second messenger seeks its own target site and provokes a launch of the third messenger and so on, resembling a relay race in human competitions. For such a molecular relay race taking place in infinite one-, two- and three-dimensional systems, we find exact expressions for the probability density function of the time instant of the terminal reaction event, conditioned on preceding successful reaction events on an ordered array of target sites. The obtained expressions pertain to the most general conditions: number of intermediate stages and the corresponding diffusion coefficients, the sizes of the target sites, the distances between them, as well as their reactivities are arbitrary.

A single predator charging a herd of prey: effects of self volume and predator-prey decision-making
(2016)

We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein–Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant.

Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
(2017)

Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
(2017)

We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry-characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
(2017)

We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic‘diffusivity’, defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(−Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process.

We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(omega) distribution of the random variable omega = tau(1)/(tau(1) + tau(2)), which is a measure for how similar the first passage times tau(1) and tau(2) are of two independent realizations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(omega) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behavior. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behavior, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(omega), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behavior even in bounded domains, in which all moments of the first passage distribution exist.

We consider the first-passage problem for N identical independent particles that are initially released uniformly in a finite domain Ω and then diffuse toward a reactive area Γ, which can be part of the outer boundary of Ω or a reaction centre in the interior of Ω. For both cases of perfect and partial reactions, we obtain the explicit formulas for the first two moments of the fastest first-passage time (fFPT), i.e., the time when the first out of the N particles reacts with Γ. Moreover, we investigate the full probability density of the fFPT. We discuss a significant role of the initial condition in the scaling of the average fFPT with the particle number N, namely, a much stronger dependence (1/N and 1/N² for partially and perfectly reactive targets, respectively), in contrast to the well known inverse-logarithmic behaviour found when all particles are released from the same fixed point. We combine analytic solutions with scaling arguments and stochastic simulations to rationalise our results, which open new perspectives for studying the relevance of multiple searchers in various situations of molecular reactions, in particular, in living cells.