Refine
Has Fulltext
- yes (2)
Document Type
Is part of the Bibliography
- yes (2)
Keywords
- Cloud Computing (1)
- Forschungsprojekte (1)
- Fundament (1)
- Future SOC Lab (1)
- In-Memory Technologie (1)
- In-Memory technology (1)
- Inversion (1)
- Künstliche Intelligenz (1)
- Multicore Architekturen (1)
- Parallel Seismik (1)
Das Parallel-Seismik-Verfahren dient vor allem der nachträglichen Längenmessung von Fundamentpfählen oder ähnlichen Elementen zur Gründung von Bauwerken. Eine solche Messung wird beispielsweise notwendig, wenn ein Gebäude verstärkt, erhöht oder anders als bisher genutzt werden soll, aber keine Unterlagen mehr über die Fundamente vorhanden sind. Das Messprinzip des schon seit einigen Jahrzehnten bekannten Verfahrens ist relativ einfach: Auf dem Pfahlkopf wird meist durch Hammerschlag eine Stoßwelle erzeugt, die durch den Pfahl nach unten läuft. Dabei wird Energie in den Boden abgegeben. Die abgestrahlten Wellen werden von Sensoren in einem parallel zum Pfahl hergestellten Bohrloch registriert. Aus den Laufzeiten lassen sich die materialspezifischen Wellengeschwindigkeiten im Pfahl und im Boden sowie die Pfahllänge ermitteln. Bisher wurde meist ein sehr einfaches Verfahren zur Datenauswertung verwendet, das die Länge der Pfähle systematisch überschätzt. In der vorliegenden Dissertation wurden die mathematisch-physikalischen Grundlagen beleuchtet und durch Computersimulation die Wellenausbreitung in Pfahl und Boden genau untersucht. Weitere Simulationen klärten den Einfluss verschiedener Mess- und Strukturparameter, beispielsweise den Einfluss von Bodenschichtung oder Fehlstellen im Pfahl. So konnte geklärt werden, in welchen Fällen mit dem Parallel-Seismik-Verfahren gute Ergebnisse erzielt werden können (z. B. bei Fundamenten in Sand oder Ton) und wo es an seine Grenzen stößt (z. B. bei Gründung im Fels). Auf Basis dieser Ergebnisse entstand ein neuer mathematischer Formalismus zur Auswertung der Laufzeiten. In Verbindung mit einem Verfahren zur Dateninversion, d. h. der automatischen Anpassung der Unbekannten in den Gleichungen an die Messergebnisse, lassen sich sehr viel genauere Werte für die Pfahllänge ermitteln als mit allen bisher publizierten Verfahren. Zudem kann man nun auch mit relativ großen Abständen zwischen Bohrloch und Pfahl (2 - 3 m) arbeiten. Die Methode wurde an simulierten Daten ausführlich getestet. Die Messmethode und das neue Auswerteverfahren wurden in einer Reihe praktischer Anwendungen getestet – und dies fast immer erfolgreich. Nur in einem Fall komplizierter Fundamentgeometrie bei gleichzeitig sehr hoher Anforderung an die Genauigkeit war schon nach Simulationen klar, dass hier ein Einsatz nicht sinnvoll ist. Dafür zeigte es sich, dass auch die Länge von Pfahlwänden und Spundwänden ermittelt werden kann. Die Parallel-Seismik-Methode funktioniert als einziges verfügbares Verfahren zur Fundamentlängenermittlung zugleich in den meisten Bodenarten sowie an metallischen und nichtmetallischen Fundamenten und kommt ohne Kalibrierung aus. Sie ist nun sehr viel breiter einsetzbar und liefert sehr viel genauere Ergebnisse. Die Simulationen zeigten noch Potential für Erweiterungen, zum Beispiel durch den Einsatz spezieller Sensoren, die zusätzliche Wellentypen empfangen und unterscheiden können.
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.