Refine
Year of publication
Document Type
- Article (42)
- Postprint (7)
- Doctoral Thesis (1)
- Other (1)
Language
- English (51)
Keywords
- Overland flow (4)
- Tropical forest (3)
- Panama (2)
- Pasture (2)
- Saturated hydraulic conductivity (2)
- Soil hydrology (2)
- Stemflow (2)
- Throughfall (2)
- overland flow (2)
- phosphorus (2)
Institute
Fast analysis of different species of molecules in soils is investigated by capillary electrophoresis (CE). Several CE techniques for the analysis of inorganic ions and carbohydrates have been tested. With regard to the intents of pedologists and the usually large number of soil analyses a bundle of CE systems is proposed, capable of effecting time-saving soil analyses. Adapted electrolyte systems recently published and new separation systems are described. Examples of the application of these methods to two different soil samples are presented.
Earlier investigations at South Creek in northeastern Queensland established the importance of overland flow as a hydrologic pathway in this tropical rainforest environment. Since this pathway is ‘fast’, transmitting presumably ‘new’ water, its importance should be reflected in the stormflow chemistry of South Creek: the greater the volumentric contribution to the stormflow hydrograph, the more similarity between the chemical composition of streamwater and of overland flow is to be expected. Water samples were taken during two storm events in an ephemeral gully (gully A), an intermittent gully (gully B) and at the South Creek catchment outlet; additional spot checks were made in several poorly defined rills. The chemical composition of ‘old’ water was determined from 45 baseflow samples collected throughout February. The two events differed considerably in their magnitudes, intensities and antecedent moisture conditions. In both events, the stormflow chemistry in South Creek was characterized by a sharp decrease in Ca, Mg, Na, Si, Cl, EC, ANC, alkalinity and total inorganic carbon. pH remained nearly constant with discharge, whereas K increased sharply, as did sulfate in an ill-defined manner. In event 1, this South Creek stormflow pattern was closely matched by the pattern in gully A, implying a dominant contribution of ‘new’ water. This match was confirmed by the spot samples from rills. Gully B behaved like South Creek itself, but with a dampened ‘new’ water signal, indicating less overland flow generation in its subcatchment. In event 2, which occurred five days later, the initial ‘new’ water signal in gully A was rapidly overwhelmed by a different signal which is attributed to rapid drainage from a perched water table. This study shows that stormflow in this rainforest catchment consists predominantly of ‘new’ water which reaches the stream channel via ‘fast’ pathways. Where the ephemeral gullies delivering overland flow are incised deeply enough to intersect a perched water table, a delayed, ‘old’ water-like signal may be transmitted.
Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia
(1995)
A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish “fast” flow paths mainly influenced by the biological subsystem from “slow” flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water.
Previous hydrometric studies demonstrated the prevalence of overland flow as a hydrological pathway in the tropical rain forest catchment of South Creek, northeast Queensland. The purpose of this study was to consider this information in a mixing analysis with the aim of identifying sources of, and of estimating their contribution to, storm flow during two events in February 1993. K and acid-neutralizing capacity (ANC) were used as tracers because they provided the best separation of the potential sources, saturation overland flow, soil water from depths of 0.3, 0.6, and 1.2 m, and hillslope groundwater in a two-dimensional mixing plot. It was necessary to distinguish between saturation overland flow, generated at the soil surface and following unchanneled pathways, and overland flow in incised pathways. This latter type of overland flow was a mixture of saturation overland flow (event water) with high concentrations of K and a low ANC, soil water (preevent water) with low concentrations of K and a low ANC, and groundwater (preevent water) with low concentrations of K and a high ANC. The same sources explained the streamwater chemistry during the two events with strongly differing rainfall and antecedent moisture conditions. The contribution of saturation overland flow dominated the storm flow during the first, high-intensity, 178-mm event, while the contribution of soil water reached 50% during peak flow of the second, low-intensity, 44-mm event 5 days later. This latter result is remarkably similar to soil water contributions to storm flow in mountainous forested catchments of the southeastern United States. In terms of event and preevent water the storm flow hydrograph of the high-intensity event is dominated by event water and that of the low-intensity event by preevent water. This study highlights the problems of applying mixing analyses to overland flow-dominated catchments and soil environments with a poorly developed vertical chemical zonation and emphasizes the need for independent hydrometric information for a complete characterization of watershed hydrology and chemistry.
Throughfall measurements were made under primary terra firme rainforest in the Rio Pichis valley, in the Upper Amazon Basin of Peru. Based on 214 precipitation events over nearly 18 months, throughfall was estimated to be 83.1±8.8% of gross precipitation. Regression analysis of all events revealed that gross precipitation is the only significant explanatory variable; the use of one-burst events does not significantly improve the regression relationship. Gross precipitation is, however, a poor predictor of throughfall for small rainfall events. The two forest structure parameters, canopy capacity, S, and free throughfall coefficient, p, were determined to be 1.3±0.2 mm and 0.32±0.18 mm. Rainfall intensity was found to influence these parameters. New methods which attempt to minimize the influence of meteorologic variables are used to estimate the potential values of these canopy parameters.
Rainfall erosivities as defined by the R factor from the universal soil loss equation were determined for all events during a two-year period at the station La Cuenca in western Amazonia. Three methods based on a power relationship between rainfall amount and erosivity were then applied to estimate event and daily rainfall erosivities from the respective rainfall amounts. A test of the resulting regression equations against an independent data set proved all three methods equally adequate in predicting rainfall erosivity from daily rainfall amount. We recommend the Richardson model for testing in the Amazon Basin, and its use with the coefficient from La Cuenca in western Amazonia.
The topography of first-order catchments in a region of western Amazonia was found to exhibit distinctive, recurrent features: a steep, straight lower side slope, a flat or nearly flat terrace at an intermediate elevation between valley floor and interfluve, and an upper side slope connecting interfluve and intermediate terrace. A detailed survey of soil-saturated hydraulic conductivity (K sat)-depth relationships, involving 740 undisturbed soil cores, was conducted in a 0.75-ha first-order catchment. The sampling approach was stratified with respect to the above slope units. Exploratory data analysis suggested fourth-root transformation of batches from the 0–0.1 m depth interval, log transformation of batches from the subsequent 0.1 m depth increments, and the use of robust estimators of location and scale. The K sat of the steep lower side slope decreased from 46 to 0.1 mm/h over the overall sampling depth of 0.4 m. The corresponding decrease was from 46 to 0.1 mm/h on the intermediate terrace, from 335 to 0.01 mm/h on the upper side slope, and from 550 to 0.015 mm/h on the interfluve. A depthwise comparison of these slope units led to the formulation of several hypotheses concerning the link between K sat and topography.
Investigations of spatial patterns in forest tree species composition are essential in the understanding of landscape dynamics, especially in areas of land-use change. The specific environmental factors controlling the present patterns, however, vary with the scale of observation. In this study we estimated abundance of adult trees and tree regeneration in a Southern Alpine valley in Ticino, Switzerland. We hypothesized that, at the present scale, spatial pattern of post-cultural tree species does not primarily depend on topographic features but responds instead to small- scale variation in historical land use. We used multivariate regression trees to relate species abundances to environmental variables. Species matrices were comprised of single tree species abundance as well as species groups. Groups were formed according to common ecological species requirements with respect to shade tolerance, soil moisture and soil nutrients. Though species variance could only be partially explained, a clear ranking in the relative importance of environmental variables emerged. Tree basal area of formerly cultivated Castanea sativa (Mill.) was the most important factor accounting for up to 50% of species' variation. Influence of topographic attributes was minor, restricted to profile curvature, and partly contradictory in response. Our results suggest the importance of biotic factors and soil properties for small-scale variation in tree species composition and need for further investigations in the study area on the ecological requirements of tree species in the early growing stage.
In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above-ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha-1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9 degrees. This situation applies to 36% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments.