### Refine

#### Keywords

- conformational analysis (2)
- dynamic NMR (2)
- quantum chemical calculations (2)
- 2 (1)
- 4-silapiperidines (1)
- 4-silathianes (1)
- 6-disilamorpholines (1)
- sulfimides (1)

4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)-1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis.

N-Substituted 4,4-dimethyl-4-silathiane 1-sulfimides Me2Si(sic)S=NSO2R [R- Ph (1), CF3 (2)] were studied experimentally by variable temperature dynamic NMR spectroscopy. Low temperature 13 C NMR spectra of the two compounds revealed the frozen ring inversion process and approximately equal content of the axial and equatorial conformers. Calculations of the 4-silathiane derivatives 1, 2 and the model compound [R Me (3)] as well as their carbon analogs, the similarly N-substituted (sic)S=NSO2R thiane 1-sulfimides [R = Ph (4), CF3 (5), Me (6)] at the DFT/B3LYP/6-311G(d, p) level in the gas phase and in chloroform solution using the PCM model at the same level of theory showed a strong dependence of the relative stability of the conformer on the solvent. The electronegative trifluoromethyl group increases the relative stability of the axial conformer.

The crystal and molecular structures of trans-2,4,4-trimethyl-4-silathiane 1-oxide 1 and 4,4-dimethyl-4- silathiane 1,1-dioxide 2 were determined by single crystal X-ray diffraction. Both compounds have the chair conformation with the 2-Me and the S=O group in compound 1 occupying the equatorial positions. The DFT (B3LYP/6-311G(d,p)) and MP2 (MP2/6-311G(d,p)) theoretical calculations nicely reproduce the X-ray experimental geometry. The obtained results are discussed in connection with the electronic and structural properties of the compounds.

4,4-Dimethyl-1-(trifluoromethylsulfonyl)-1,4-azasilinane 1 and 2,2,6,6-tetramethyl-4-(trifluoromethylsulfonyl)- 1,4,2,6-oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Moller-Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed inward and outward the ring, the latter being 0.20.4 kcal/mol (for 1) and 1.1 kcal/mol (for 2) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference Delta G degrees for the 'inward' reversible arrow 'outward' equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X-ray diffraction analysis.