Refine
Year of publication
Document Type
- Article (45)
- Other (36)
- Monograph/Edited Volume (25)
- Conference Proceeding (3)
- Part of a Book (1)
- Postprint (1)
- Report (1)
Keywords
- E-Learning (7)
- MOOC (7)
- Cloud Computing (6)
- openHPI (5)
- Identitätsmanagement (4)
- MOOCs (4)
- Security (4)
- cloud (4)
- identity management (4)
- Cloud-Security (3)
HPI Future SOC Lab
(2015)
Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie.
Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2015 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 15. April 2015 und 4. November 2015 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.
Generative multi-adversarial network for striking the right balance in abdominal image segmentation
(2020)
Purpose: The identification of abnormalities that are relatively rare within otherwise normal anatomy is a major challenge for deep learning in the semantic segmentation of medical images. The small number of samples of the minority classes in the training data makes the learning of optimal classification challenging, while the more frequently occurring samples of the majority class hamper the generalization of the classification boundary between infrequently occurring target objects and classes. In this paper, we developed a novel generative multi-adversarial network, called Ensemble-GAN, for mitigating this class imbalance problem in the semantic segmentation of abdominal images. Method: The Ensemble-GAN framework is composed of a single-generator and a multi-discriminator variant for handling the class imbalance problem to provide a better generalization than existing approaches. The ensemble model aggregates the estimates of multiple models by training from different initializations and losses from various subsets of the training data. The single generator network analyzes the input image as a condition to predict a corresponding semantic segmentation image by use of feedback from the ensemble of discriminator networks. To evaluate the framework, we trained our framework on two public datasets, with different imbalance ratios and imaging modalities: the Chaos 2019 and the LiTS 2017. Result: In terms of the F1 score, the accuracies of the semantic segmentation of healthy spleen, liver, and left and right kidneys were 0.93, 0.96, 0.90 and 0.94, respectively. The overall F1 scores for simultaneous segmentation of the lesions and liver were 0.83 and 0.94, respectively. Conclusion: The proposed Ensemble-GAN framework demonstrated outstanding performance in the semantic segmentation of medical images in comparison with other approaches on popular abdominal imaging benchmarks. The Ensemble-GAN has the potential to segment abdominal images more accurately than human experts.
Design thinking research
(2012)