Refine
Year of publication
Document Type
- Article (44)
- Monograph/edited volume (6)
- Postprint (5)
- Review (4)
- Other (2)
- Part of Periodical (2)
- Conference Proceeding (1)
Keywords
- perovskite solar cells (5)
- photoluminescence (3)
- Gewalt (2)
- Kriminalität (2)
- Nachhaltigkeit (2)
- PTH (2)
- Poecilia mexicana (2)
- Prävention (2)
- Rechtsextremismus (2)
- crime (2)
Institute
- Institut für Biochemie und Biologie (19)
- Institut für Physik und Astronomie (14)
- Institut für Geowissenschaften (6)
- Institut für Chemie (4)
- Institut für Informatik und Computational Science (4)
- Department Sport- und Gesundheitswissenschaften (3)
- Historisches Institut (3)
- Institut für Ernährungswissenschaft (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Department Erziehungswissenschaft (1)
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars ( the most common stars in our Galaxy), this model favours the formation of Earth-mass (M+) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars(1-4). More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5(-2.7)(+5.5)M(+) planetary companion at a separation of 2.6(- 0.6)(+1.5) AU from a 0.22(-0.11)(+0.21)M(.) M-dwarf star, where M-. refers to a solar mass. (We propose to name it OGLE- 2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.
Major depression is a highly prevalent severe mood disorder that is treated with antidepressants. The molecular targets of antidepressants require definition. We investigated the role of the acid sphingomyelinase (Asm)-ceramide system as a target for antidepressants. Therapeutic concentrations of the antidepressants amitriptyline and fluoxetine reduced Asm activity and ceramide concentrations in the hippocampus, increased neuronal proliferation, maturation and survival and improved behavior in mouse models of stress-induced depression. Genetic Asm deficiency abrogated these effects. Mice overexpressing Asm, heterozygous for acid ceramidase, treated with blockers of ceramide metabolism or directly injected with C16 ceramide in the hippocampus had higher ceramide concentrations and lower rates of neuronal proliferation, maturation and survival compared with controls and showed depression-like behavior even in the absence of stress. The decrease of ceramide abundance achieved by antidepressant-mediated inhibition of Asm normalized these effects. Lowering ceramide abundance may thus be a central goal for the future development of antidepressants.
A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources
(2012)
We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Was wird unter „nachhaltiger Prävention“ in der Präventionsforschung verstanden? Welche guten Beispiele für nachhaltige Prävention gibt es in der Praxis? Und v. a.: Wie lässt sich Prävention in den verschiedenen Bereichen wie Kriminalität, Gewalt und Rechtsextremismus nachhaltig gestalten? Diesen Fragen will der vorliegende Sammelband nachgehen und damit der Präventionsdebatte neue Impulse verleihen. Der Band will insbesondere die nationale sowie internationale Fachdebatte konstruktiv aufgreifen, Theorie und Praxis verbinden, „good practice“ Beispiele darstellen sowie Perspektiven nachhaltiger Prävention aufzeigen. Mit diesem Themenspektrum richtet er sich sowohl an die Wissenschaft als auch an die Praxis sowie insgesamt an eine interessierte Öffentlichkeit.
Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a glucosyl buffer to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.
Kleine Geschichte Spaniens
(2004)