### Refine

#### Year of publication

- 2004 (3) (remove)

Unstable dimension variability is a mechanism whereby an invariant set of a dynamical system, like a chaotic attractor or a strange saddle, loses hyperbolicity in a severe way, with serious consequences on the shadowability properties of numerically generated trajectories. In dynamical systems possessing a variable parameter, this phenomenon can be triggered by the bifurcation of an unstable periodic orbit. This Letter aims at discussing the possible types of codimension-one bifurcations leading to unstable dimension variability in a two-dimensional map, presenting illustrative examples and displaying numerical evidences of this fact by computing finite-time Lyapunov exponents. (C) 2004 Elsevier B.V. All rights reserved

We consider the dynamics of the lowest order transversal vibration mode of a suspension bridge, for which the hangers are treated as one-sided springs, according to the model of Lazer and McKeena [SIAM Review 58, 1990, 537]. We analyze in particular the multi-stability of periodic attractors and the basin of attraction structure in phase space and its dependence with the model parameters. The parameter values used in numerical simulations have been estimated from a number of bridges built in the United States and in the United Kingdom, thus taking into account realistic, yet sometimes simplified, structural, aerodynamical, and physical considerations

We study the dynamics of chemically or biologically active particles advected by open flows of chaotic time dependence, which can be modeled by a random time dependence of the parameters on a stroboscopic map. We develop a general theory for reactions in such random flows, and derive the reaction equation for this case. We show that there is a singular enhancement of the reaction in random flows, and this enhancement is increased as compared to the nonrandom case. We verify our theory in a model flow generated by four point vortices moving chaotically