### Refine

#### Year of publication

#### Document Type

- Article (71)
- Preprint (4)
- Postprint (3)
- Monograph/Edited Volume (1)
- Other (1)

#### Keywords

Interplay of coupling and common noise at the transition to synchrony in oscillator populations
(2016)

There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes.

We consider the effect of external noise on the dynamics of limit cycle oscillators. The Lyapunov exponent becomes negative under influence of small white noise, what means synchronization of two or more identical systems subject to common noise. We analytically study the effect of small nonidentities in the oscillators and in the noise, and derive statistical characteristics of deviations from the perfect synchrony. Large white noise can lead to desynchronization of oscillators, provided they are nonisochronous. This is demonstrated for the Van der Pol-Duffing system

We study the stability of self-sustained oscillations under the influence of external noise. For small-noise amplitude a phase approximation for the Langevin dynamics is valid. A stationary distribution of the phase is used for an analytic calculation of the maximal Lyapunov exponent. We demonstrate that for small noise the exponent is negative, which corresponds to synchronization of oscillators. (c) 2004 Elsevier B.V. All rights reserved

We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2 : 1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

We study the properties of energy spreading in a lattice of elastically colliding harmonic oscillators (Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized initial state is mediated by compactons and chaotic breathers. In a disordered lattice, the compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with a few chaotic spots.

We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical spinswith ferromagnetic and nematic coupling. We demonstrate the inequivalence bymapping themicrocanonical phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of different macroscopic states in both the phase diagrams.

When we fixate a stationary target, our eyes generate miniature (or fixational) eye movements involuntarily. These fixational eye movements are classified as slow components (physiological drift, tremor) and microsaccades, which represent rapid, small-amplitude movements. Here we propose an integrated mathematical model for the generation of slow fixational eye movements and microsaccades. The model is based on the concept of self-avoiding random walks in a potential, a process driven by a self-generated activation field. The self-avoiding walk generates persistent movements on a short timescale, whereas, on a longer timescale, the potential produces antipersistent motions that keep the eye close to an intended fixation position. We introduce microsaccades as fast movements triggered by critical activation values. As a consequence, both slow movements and microsaccades follow the same law of motion; i.e., movements are driven by the self-generated activation field. Thus, the model contributes a unified explanation of why it has been a long-standing problem to separate slow movements and microsaccades with respect to their motion-generating principles. We conclude that the concept of a self-avoiding random walk captures fundamental properties of fixational eye movements and provides a coherent theoretical framework for two physiologically distinct movement types.

Lyapunov Exponents
(2016)

Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers.

We study the phase dynamics of a chain of autonomous oscillators with a dispersive coupling. In the quasicontinuum limit the basic discrete model reduces to a Korteveg-de Vries-like equation, but with a nonlinear dispersion. The system supports compactons: solitary waves with a compact support and kovatons which are compact formations of glued together kink-antikink pairs that may assume an arbitrary width. These robust objects seem to collide elastically and, together with wave trains, are the building blocks of the dynamics for typical initial conditions. Numerical studies of the complex Ginzburg-Landau and Van der Pol lattices show that the presence of a nondispersive coupling does not affect kovatons, but causes a damping and deceleration or growth and acceleration of compactons

We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincare surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The method is illustrated with the Rossler and Lorenz systems.