Refine
Year of publication
Document Type
- Article (72)
- Postprint (22)
- Report (7)
- Monograph/Edited Volume (3)
- Other (2)
- Preprint (2)
- Conference Proceeding (1)
- Habilitation Thesis (1)
Keywords
- Germany (15)
- damage (9)
- preparedness (9)
- vulnerability (8)
- floods (7)
- Klimaanpassung (5)
- Turkey (5)
- Starkregen (4)
- disaster risk reduction (4)
- insurance (4)
A reliable estimation of flood impacts enables meaningful flood risk management and rapid assessments of flood impacts shortly after a flood. The flood in 2021 in Central Europe and the analysis of its impacts revealed that these estimations are still inadequate. Therefore, we investigate the influence of different data sets and methods aiming to improve flood impact estimates. We estimated economic flood impacts to private households and companies for a flood event in 2013 in Germany using (a) two different flood maps, (b) two approaches to map exposed objects based on OpenStreetMap and the Basic European Asset Map, (c) two different approaches to estimate asset values, and (d) tree-based models and Stage-Damage-Functions to describe the vulnerability. At the macro scale, water masks lead to reasonable impact estimations. At the micro and meso-scale, the identification of affected objects by means of water masks is insufficient leading to unreliable estimations. The choice of exposure data sets is most influential on the estimations. We find that reliable impact estimations are feasible with reported numbers of flood-affected objects from the municipalities. We conclude that more effort should be put in the investigation of different exposure data sets and the estimation of asset values. Furthermore, we recommend the establishment of a reporting system in the municipalities for a fast identification of flood-affected objects shortly after an event.
The most severe flood events in Turkey were determined for the period 1960–2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating pathways (i.e., topographic features, catchment size, land use types, and soil properties) of these 25 events were analyzed. On this basis, a new approach was developed to identify the main influencing factor per event and to provide additional information for determining the dominant flood occurrence pathways for severe floods. The events were then classified through hierarchical cluster analysis. As a result, six different clusters were found and characterized. Cluster 1 comprised flood events that were mainly influenced by drainage characteristics (e.g., catchment size and shape); Cluster 2 comprised events aggravated predominantly by urbanization; steep topography was identified to be the dominant factor for Cluster 3; extreme rainfall was determined as the main triggering factor for Cluster 4; saturated soil conditions were found to be the dominant factor for Cluster 5; and orographic effects of mountain ranges characterized Cluster 6. This study determined pathway patterns of the severe floods in Turkey with regard to their main causal or aggravating mechanisms. Accordingly, geomorphological properties are of major importance in large catchments in eastern and northeastern Anatolia. In addition, in small catchments, the share of urbanized area seems to be an important factor for the extent of flood impacts. This paper presents an outcome that could be used for future urban planning and flood risk prevention studies to understand the flood mechanisms in different regions of Turkey.
River floods are among the most damaging natural hazards that frequently occur in Germany. Flooding causes high economic losses and impacts many residents. In 2016, several southern German municipalities were hit by flash floods after unexpectedly severe heavy rainfall, while in 2013 widespread river flooding had occurred. This study investigates and compares the psychological impacts of river floods and flash floods and potential consequences for precautionary behaviour. Data were collected using computer-aided telephone interviews that were conducted among flood-affected households around 9 months after each damaging event. This study applies Bayesian statistics and negative binomial regressions to test the suitability of psychological indicators to predict the precaution motivation of individuals. The results show that it is not the particular flood type but rather the severity and local impacts of the event that are crucial for the different, and potentially negative, impacts on mental health. According to the used data, however, predictions of the individual precaution motivation should not be based on the derived psychological indicators – i.e. coping appraisal, threat appraisal, burden and evasion – since their explanatory power was generally low and results are, for the most part, non-significant. Only burden reveals a significant positive relation to planned precaution regarding weak flash floods. In contrast to weak flash floods and river floods, the perceived threat of strong flash floods is significantly lower although feelings of burden and lower coping appraisals are more pronounced. Further research is needed to better include psychological assessment procedures and to focus on alternative data sources regarding floods and the connected precaution motivation of affected residents.
The heavy rainfall events in recent years have caused great damage, which has increased the public awareness of the topic of heavy rainfall. For this reason, this article discusses how a systematic integration of heavy rainfall within the framework of the European Floods Directive would be possible and reasonable. For this purpose, a matrix covering possible synergies and barriers was created for all steps of the directive, which were then examined in 15 semi-structured interviews with representatives from specialized administration, the private sector and academia. Although there are some synergies, the additional effort required, especially regarding the identification of the risk areas and the higher level of detail required for risk modeling, would be so high that the European Floods Directive cannot be deemed to be an appropriate framework for heavy rainfall risk management. Nevertheless, there is a need for action, e.g. in the field of self-protection, improved risk communication to the population, combined with increased public and interagency cooperation.
Research suggests that providing weather forecast end users with additional information about the forecast uncertainty of a possible event can enhance the preparation of mitigation measures. But not all users have the same threshold for taking action. This paper focuses on the question of whether there are influencing factors that determine decision thresholds for numerical weather forecast information beginning at which the general public would start to take protective action. In spring 2014, 1342 residents of Berlin, Germany participated in a survey. Questions related to the following topics: perception of and prior experience with severe weather, trustworthiness of forecasters and confidence in weather forecasts, and sociodemographic and socioeconomic characteristics. Within the questionnaire a scenario was created in order to determine individual decision thresholds and see whether subgroups of the sample lead to different thresholds.
The transport sector is crucial for the functioning of modern societies and their economic welfares. However, it is vulnerable to natural hazards since damage and disturbances appear recurrently. Risk management of transport infrastructure is a complex task that usually involves various stakeholders from the public and private sector. Related scientific knowledge, however, is limited so far. Therefore, this paper presents detailed information on the risk management of the Austrian railway operator gathered through literature studies, in interviews, meetings and workshops. The findings reveal three decision making levels of risk reduction: 1) a superordinate level for the negotiation of frameworks and guidelines, 2) a regional to local level for the planning and implementation of structural measures and 3) a regional to local level for non-structural risk reduction measures and emergency management. On each of these levels, multi-sectoral partnerships exist that aim at reducing the risk to railway infrastructure. Chosen partnerships are evaluated applying the Capital Approach Framework and some collaborations are analyzed considering the flood and landslide events in June 2013. The evaluation reveals that the risk management of the railway operator and its partners has been successful, but there is still potential for enhancement. Difficulties are seen for instance in obtaining continuity of employees and organizational structures which can affect personal contacts and mutual trust and might hamper sharing data and experiences. Altogether, the case reveals the importance of multi-sectoral partnerships that are seen as a crucial element of risk management in the Sendai Framework for Disaster Risk Reduction 2015-2030.
For effective disaster risk management and adaptation planning, a good understanding of current and projected flood risk is required. Recent advances in quantifying flood risk at the regional and global scale have largely neglected critical infrastructure, or addressed this important sector with insufficient detail. Here, we present the first European-wide assessment of current and future flood risk to railway tracks for different global warming scenarios using an infrastructure-specific damage model. We find that the present risk, measured as expected annual damage, to railway networks in Europe is approx. (sic)581 million per year, with the highest risk relative to the length of the network in North Macedonia, Croatia, Norway, Portugal, and Germany. Based on an ensemble of climate projections for RCP8.5, we show that current risk to railway networks is projected to increase by 255% under a 1.5 degrees C, by 281% under a 2 degrees C, and by 310% under a 3 degrees C warming scenario. The largest increases in risk under a 3 degrees C scenario are projected for Slovakia, Austria, Slovenia, and Belgium. Our advances in the projection of flood risk to railway infrastructure are important given their criticality, and because losses to public infrastructure are usually not insured or even uninsurable in the private market. To cover the risk increase due to climate change, European member states would need to increase expenditure in transport by (sic)1.22 billion annually under a 3 degrees C warming scenario without further adaptation. Limiting global warming to the 1.5 degrees C goal of the Paris Agreement would result in avoided losses of (sic)317 million annually.
Social inequalities lead to flood resilience inequalities across social groups, a topic that requires improved documentation and understanding. The objective of this paper is to attend to these differences by investigating self-stated flood recovery across genders in Vietnam as a conceptual replication of earlier results from Germany. This study employs a regression-based analysis of 1,010 respondents divided between a rural coastal and an urban community in Thua Thien-Hue province. The results highlight an important set of recovery process-related variables. The set of relevant variables is similar across genders in terms of inclusion and influence, and includes age, social capital, internal and external support after a flood, perceived severity of previous flood impacts, and the perception of stress-resilience. However, women were affected more heavily by flooding in terms of longer recovery times, which should be accounted for in risk management. Overall, the studied variables perform similarly in Vietnam and Germany. This study, therefore, conceptually replicates previous results suggesting that women display slightly slower recovery levels as well as that psychological variables influence recovery rates more than adverse flood impacts. This provides an indication of the results' potentially robust nature due to the different socio-environmental contexts in Germany and Vietnam.
Integrated flood management strategies consider property-level precautionary measures as a vital part. Whereas this is a well-researched topic for residents, little is known about the adaptive behaviour of flood-prone companies although they often settle on the ground floor of buildings and are thus among the first affected by flooding. This pilot study analyses flood responses of 64 businesses in a district of the city of Dresden, Germany that experienced major flooding in 2002 and 2013. Using standardised survey data and accompanying qualitative interviews, the analyses revealed that the largest driver of adaptive behaviour is experiencing flood events. Intangible factors such as tradition and a sense of community play a role for the decision to stay in the area, while lacking ownership might hamper property-level adaptation. Further research is also needed to understand the role of insurance and governmental aid for recovery and adaptation of businesses.