### Refine

#### Document Type

- Article (12)
- Monograph/Edited Volume (1)

#### Is part of the Bibliography

- yes (13)

#### Keywords

- Coherent phonons (1)
- Dynamical X-ray theory (1)
- Heat diffusion (1)
- Incoherent phonons (1)
- N-temperature model (1)
- Textstruktur (1)
- Thermoelasticity (1)
- Ultrafast dynamics (1)
- X-ray diffraction (1)
- X-ray switching (1)

We investigate coherent phonon propagation in a thin film of ferroelectric PbZr0.2Ti0.8O3 (PZT) by ultrafast x-ray diffraction experiments, which are analyzed as time-resolved reciprocal space mapping in order to observe the in-and out-of-plane structural dynamics, simultaneously. The mosaic structure of the PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a picosecond time scale, which is not observed for out-of-plane compression.

Brillouin scattering of visible and hard X-ray photons from optically synthesized phonon wavepackets
(2013)

We monitor how destructive interference of undesired phonon frequency components shapes a quasi-monochromatic hypersound wavepacket spectrum during its local real-time preparation by a nanometric transducer and follow the subsequent decay by nonlinear coupling. We prove each frequency component of an optical supercontinuum probe to be sensitive to one particular phonon wavevector in bulk material and cross-check this by ultrafast x-ray diffraction experiments with direct access to the lattice dynamics. Establishing reliable experimental techniques with direct access to the transient spectrum of the excitation is crucial for the interpretation in strongly nonlinear regimes, such as soliton formation.

A diffractometer setup is presented, based on a laser-driven plasma X-ray source for reciprocal-space mapping with femtosecond temporal resolution. In order to map out the reciprocal space, an X-ray optic with a convergent beam is used with an X-ray area detector to detect symmetrically and asymmetrically diffracted X-ray photons simultaneously. The setup is particularly suited for measuring thin films or imperfect bulk samples with broad rocking curves. For quasi-perfect crystalline samples with insignificant in-plane Bragg peak broadening, the measured reciprocal-space maps can be corrected for the known resolution function of the diffractometer in order to achieve high-resolution rocking curves with improved data quality. In this case, the resolution of the diffractometer is not limited by the convergence of the incoming X-ray beam but is solely determined by its energy bandwidth.

We synthesize sub-THz longitudinal quasimonochromatic acoustic phonons in a SrTiO3 single crystal using a SrRuO3/SrTiO3 superlattice as an optical-acoustic transducer. The generated acoustic phonon spectrum is determined using ultrafast x-ray diffraction. The analysis of the generated phonon spectrum in the time domain reveals a k-vector dependent phonon lifetime. It is observed that even at sub-THz frequencies the phonon lifetime agrees with the 1/omega(2) power law known from Akhiezer's model for hyper sound attenuation. The observed shift of the synthesized spectrum to the higher q is discussed in the framework of nonlinear effects appearing due to the high amplitude of the synthesized phonons.

We excite an epitaxial SrRuO3 thin film transducer by a pulse train of ultrashort laser pulses, launching coherent sound waves into the underlying SrTiO3 substrate. Synchrotron-based x-ray diffraction (XRD) data exhibiting separated sidebands to the substrate peak evidence the excitation of a quasi-monochromatic phonon wavepacket with sub-THz central frequency. The frequency and bandwidth of this sound pulse can be controlled by the optical pulse train. We compare the experimental data to combined lattice dynamics and dynamical XRD simulations to verify the coherent phonon dynamics. In addition, we observe a lifetime of 130 ps of such sub-THz phonons in accordance with the theory.

Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source
(2012)

We present an experimental setup of a laser-driven x-ray plasma source for femtosecond x-ray diffraction. Different normalization schemes accounting for x-ray source intensity fluctuations are discussed in detail. We apply these schemes to measure the temporal evolution of Bragg peak intensities of perovskite superlattices after ultrafast laser excitation.

Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO3 films on SrTiO3 substrates. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

The UDKM1DSIM toolbox is a collection of MATLAB (MathWorks Inc.) classes and routines to simulate the structural dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary layered structures on the atomic level including a rich database of corresponding element-specific physical properties. The excitation of ultrafast dynamics is represented by an N-temperature model which is commonly applied for ultrafast optical excitations. Structural dynamics due to thermal stress are calculated by a linear-chain model of masses and springs. The resulting X-ray diffraction response is computed by dynamical X-ray theory. The UDKM1DSIM toolbox is highly modular and allows for introducing user-defined results at any step in the simulation procedure.
Program summary
Program title: udkm1Dsim
Catalogue identifier: AERH_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERH_v1_0.html
Licensing provisions: BSD
No. of lines in distributed program, including test data, etc.: 130221
No. of bytes in distributed program, including test data, etc.: 2746036
Distribution format: tar.gz
Programming language: Matlab (MathWorks Inc.).
Computer: PC/Workstation.
Operating system: Running Matlab installation required (tested on MS Win XP -7, Ubuntu Linux 11.04-13.04).
Has the code been vectorized or parallelized?: Parallelization for dynamical XRD computations. Number of processors used: 1-12 for Matlab Parallel Computing Toolbox; 1 - infinity for Matlab Distributed Computing Toolbox
External routines:
Optional: Matlab Parallel Computing Toolbox, Matlab Distributed Computing Toolbox Required (included in the package): mtimesx Fast Matrix Multiply for Matlab by James Tursa, xml io tools by Jaroslaw Tuszynski, textprogressbar by Paul Proteus
Nature of problem:
Simulate the lattice dynamics of 1D crystalline sample structures due to an ultrafast excitation including thermal transport and compute the corresponding transient X-ray diffraction pattern.
Solution method:
Restrictions:
The program is restricted to 1D sample structures and is further limited to longitudinal acoustic phonon modes and symmetrical X-ray diffraction geometries.
Unusual features: The program is highly modular and allows the inclusion of user-defined inputs at any time of the simulation procedure.
Running time: The running time is highly dependent on the number of unit cells in the sample structure and other simulation parameters such as time span or angular grid for X-ray diffraction computations. However, the example files are computed in approx. 1-5 min each on a 8 Core Processor with 16 GB RAM available.

We employ the ultrafast response of a 15.4 nm thin SrRuO3 layer grown epitaxially on a SrTiO3 substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

A new concept for shortening hard X-ray pulses emitted from a third-generation synchrotron source down to few picoseconds is presented. The device, called the PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-excited thin film. A characterization of the structure demonstrates switching times of <= 5 ps and a peak reflectivity of similar to 10(-3). The device is tested in a real synchrotron-based pump-probe experiment and reveals features of coherent phonon propagation in a second thin film sample, thus demonstrating the potential to significantly improve the temporal resolution at existing synchrotron facilities.