### Refine

#### Keywords

- Dynamics and mechanics of faulting (1)
- Earthquake dynamics (1)
- Earthquake interaction (1)
- Inverse theory (1)
- Seismic cycle (1)
- Seismicity and tectonics (1)
- Statistical seismology (1)
- forecasting (1)
- prediction (1)

#### Institute

We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake.

Earthquake catalogs are probably the most informative data source about spatiotemporal seismicity evolution. The catalog quality in one of the most active seismogenic zones in the world, Japan, is excellent, although changes in quality arising, for example, from an evolving network are clearly present. Here, we seek the best estimate for the largest expected earthquake in a given future time interval from a combination of historic and instrumental earthquake catalogs. We extend the technique introduced by Zoller et al. (2013) to estimate the maximum magnitude in a time window of length T-f for earthquake catalogs with varying level of completeness. In particular, we consider the case in which two types of catalogs are available: a historic catalog and an instrumental catalog. This leads to competing interests with respect to the estimation of the two parameters from the Gutenberg-Richter law, the b-value and the event rate lambda above a given lower-magnitude threshold (the a-value). The b-value is estimated most precisely from the frequently occurring small earthquakes; however, the tendency of small events to cluster in aftershocks, swarms, etc. violates the assumption of a Poisson process that is used for the estimation of lambda. We suggest addressing conflict by estimating b solely from instrumental seismicity and using large magnitude events from historic catalogs for the earthquake rate estimation. Applying the method to Japan, there is a probability of about 20% that the maximum expected magnitude during any future time interval of length T-f = 30 years is m >= 9.0. Studies of different subregions in Japan indicates high probabilities for M 8 earthquakes along the Tohoku arc and relatively low probabilities in the Tokai, Tonankai, and Nankai region. Finally, for scenarios related to long-time horizons and high-confidence levels, the maximum expected magnitude will be around 10.

The injection of fluids is a well-known origin for the triggering of earthquake sequences. The growing number of projects related to enhanced geothermal systems, fracking, and others has led to the question, which maximum earthquake magnitude can be expected as a consequence of fluid injection? This question is addressed from the perspective of statistical analysis. Using basic empirical laws of earthquake statistics, we estimate the magnitude M-T of the maximum expected earthquake in a predefined future time window T-f. A case study of the fluid injection site at Paradox Valley, Colorado, demonstrates that the magnitude m 4.3 of the largest observed earthquake on 27 May 2000 lies very well within the expectation from past seismicity without adjusting any parameters. Vice versa, for a given maximum tolerable earthquake at an injection site, we can constrain the corresponding amount of injected fluids that must not be exceeded within predefined confidence bounds.

Due to large uncertainties and non-uniqueness in fault slip inversion, the investigation of stress coupling based on the direct comparison of independent slip inversions, for example, between the coseismic slip distribution and the interseismic slip deficit, may lead to ambiguous conclusions. In this study, we therefore adopt the stress-constrained joint inversion in the Bayesian approach of Wang et al., and implement the physical hypothesis of stress coupling as a prior. We test the hypothesis that interseismic locking is coupled with the coseismic rupture, and the early post-seismic deformation is a stress relaxation process in response to the coseismic stress perturbation. We characterize the role of stress coupling in the seismic cycle by evaluating the efficiency of the model to explain the available data. Taking the 2004 M6 Parkfield earthquake as a study case, we find that the stress coupling hypothesis is in agreement with the data. The coseismic rupture zone is found to be strongly locked during the interseismic phase and the post-seismic slip zone is indicated to be weakly creeping. The post-seismic deformation plays an important role to rebuild stress in the coseismic rupture zone. Based on our results for the stress accumulation during both inter- and post-seismic phase in the coseismic rupture zone, together with the coseismic stress drop, we estimate a recurrence time of M6 earthquake in Parkfield around 23-41 yr, suggesting that the duration of 38 yr between the two recent M6 events in Parkfield is not a surprise.

We discuss to what extent a given earthquake catalog and the assumption of a doubly truncated Gutenberg-Richter distribution for the earthquake magnitudes allow for the calculation of confidence intervals for the maximum possible magnitude M. We show that, without further assumptions such as the existence of an upper bound of M, only very limited information may be obtained. In a frequentist formulation, for each confidence level alpha the confidence interval diverges with finite probability. In a Bayesian formulation, the posterior distribution of the upper magnitude is not normalizable. We conclude that the common approach to derive confidence intervals from the variance of a point estimator fails. Technically, this problem can be overcome by introducing an upper bound (M) over tilde for the maximum magnitude. Then the Bayesian posterior distribution can be normalized, and its variance decreases with the number of observed events. However, because the posterior depends significantly on the choice of the unknown value of (M) over tilde, the resulting confidence intervals are essentially meaningless. The use of an informative prior distribution accounting for pre-knowledge of M is also of little use, because the prior is only modified in the case of the occurrence of an extreme event. Our results suggest that the maximum possible magnitude M should be better replaced by M(T), the maximum expected magnitude in a given time interval T, for which the calculation of exact confidence intervals becomes straightforward. From a physical point of view, numerical models of the earthquake process adjusted to specific fault regions may be a powerful alternative to overcome the shortcomings of purely statistical inference.

We present a Bayesian method that allows continuous updating the aperiodicity of the recurrence time distribution of large earthquakes based on a catalog with magnitudes above a completeness threshold. The approach uses a recently proposed renewal model for seismicity and allows the inclusion of magnitude uncertainties in a straightforward manner. Errors accounting for grouped magnitudes and random errors are studied and discussed. The results indicate that a stable and realistic value of the aperiodicity can be predicted in an early state of seismicity evolution, even though only a small number of large earthquakes has occurred to date. Furthermore, we demonstrate that magnitude uncertainties can drastically influence the results and can therefore not be neglected. We show how to correct for the bias caused by magnitude errors. For the region of Parkfield we find that the aperiodicity, or the coefficient of variation, is clearly higher than in studies which are solely based on the large earthquakes.

Aftershock models are usually based either on purely empirical relations ignoring the physical mechanism or on deterministic calculations of stress changes on a predefined receiver fault orientation. Here we investigate the effect of considering more realistic fault systems in models based on static Coulomb stress changes. For that purpose, we perform earthquake simulations with elastic half-space stress interactions, rate-and-state dependent frictional earthquake nucleation, and extended ruptures with heterogeneous (fractal) slip distributions. We find that the consideration of earthquake nucleation on multiple receiver fault orientations does not influence the shape of the temporal Omori-type aftershock decay, but changes significantly the predicted spatial patterns and the total number of triggered events. So-called stress shadows with decreased activity almost vanish, and activation decays continuously with increasing distance from the main shock rupture. The total aftershock productivity, which is shown to be almost independent of the assumed background rate, increases significantly if multiple receiver fault planes exist. The application to the 1992 M7.3 Landers, California, aftershock sequence indicates a good agreement with the locations and the total productivity of the observed directly triggered aftershocks.

In recent years, the triggering of earthquakes has been discussed controversially with respect to the underlying mechanisms and the capability to evaluate the resulting seismic hazard. Apart from static stress interactions, other mechanisms including dynamic stress transfer have been proposed to be part of a complex triggering process. Exploiting the theoretical relation between long-term earthquake rates and stressing rate, we demonstrate that static stress changes resulting from an earthquake rupture allow us to predict quantitatively the aftershock activity without tuning specific model parameters. These forecasts are found to be in excellent agreement with all first-order characteristics of aftershocks, in particular, (1) the total number, (2) the power law distance decay, (3) the scaling of the productivity with the main shock magnitude, (4) the foreshock probability, and (5) the empirical Bath law providing the maximum aftershock magnitude, which supports the conclusion that static stress transfer is the major mechanism of earthquake triggering.