### Refine

#### Keywords

- Go/No-go task (2)
- SNARC (2)
- horizontal space (2)
- spatial-numerical associations (2)
- vertical space (2)
- embodied cognition (1)
- eye movements (1)
- problem solving (1)

#### Institute

Moving arms
(2018)

Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.

There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where “more is up.” Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.