### Refine

#### Document Type

- Article (3)
- Postprint (2)
- Doctoral Thesis (1)
- Report (1)

#### Keywords

- Germany (3)
- Bayesian networks (2)
- Costs (2)
- Damage (2)
- Disasters (2)
- Event (2)
- Hazards (2)
- Inoperability (2)
- June 2013 (2)
- Losses (2)

We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely.

Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks.
In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach.
Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.

Im Graduiertenkolleg NatRiskChange der Universität Potsdam und anderen Forschungseinrichtungen werden beobachtete sowie zukünftig mögliche Veränderungen von Naturgefahren untersucht. Teil des strukturierten Doktorandenprogramms sind sogenannte Task-Force-Einsätze, bei denen die Promovierende zeitlich begrenzt ein aktuelles Ereignis auswerten. Im Zuge dieser Aktivität wurde die Sturzflut vom 29.05.2016 in Braunsbach (Baden-Württemberg) untersucht.
In diesem Bericht werden erste Auswertungen zur Einordnung der Niederschläge, zu den hydrologischen und geomorphologischen Prozessen im Einzugsgebiet des Orlacher Bachs sowie zu den verursachten Schäden beleuchtet.
Die Region war Zentrum extremer Regenfälle in der Größenordnung von 100 mm innerhalb von 2 Stunden. Das 6 km² kleine Einzugsgebiet hat eine sehr schnelle Reaktionszeit, zumal bei vorgesättigtem Boden. Im steilen Bachtal haben mehrere kleinere und größere Hangrutschungen über 8000 m³ Geröll, Schutt und Schwemmholz in das Gewässer eingetragen und möglicherweise kurzzeitige Aufstauungen und Durchbrüche verursacht. Neben den großen Wassermengen mit einer Abflussspitze in einer Größenordnung von 100 m³/s hat gerade die Geschiebefracht zu großen Schäden an den Gebäuden entlang des Bachlaufs in Braunsbach geführt.

Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.

Even though quite different in occurrence and consequences, from a modeling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding: uncertainty about the modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings, it treats response variables as well as explanatory variables as random variables making no difference between input and output variables. Using a graphical representation Bayesian networks encode the dependency relations between the variables in a directed acyclic graph: variables are represented as nodes and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution of all variables can thus be described by decomposing it, according to the depicted independences, into a product of local conditional probability distributions, which are defined by the parameters of the Bayesian network. In the framework of this thesis the Bayesian network approach is applied to different natural hazard domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure and parameters from data, Bayesian networks reveal relevant dependency relations between the included variables and help to gain knowledge about the underlying processes. The problem of Bayesian network learning is cast in a Bayesian framework, considering the network structure and parameters as random variables itself and searching for the most likely combination of both, which corresponds to the maximum a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in theory the learning of Bayesian networks based on real-world data is usually not straight forward and requires an adoption of existing algorithms. Typically arising problems are the handling of continuous variables, incomplete observations and the interaction of both. Working with continuous distributions requires assumptions about the allowed families of distributions. To "let the data speak" and avoid wrong assumptions, continuous variables are instead discretized here, thus allowing for a completely data-driven and distribution-free learning. An extension of the MAP score, considering the discretization as random variable as well, is developed for an automatic multivariate discretization, that takes interactions between the variables into account. The discretization process is nested into the network learning and requires several iterations. Having to face incomplete observations on top, this may pose a computational burden. Iterative proceedings for missing value estimation become quickly infeasible. A more efficient albeit approximate method is used instead, estimating the missing values based only on the observations of variables directly interacting with the missing variable. Moreover natural hazard assessments often have a primary interest in a certain target variable. The discretization learned for this variable does not always have the required resolution for a good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved with continuous approximations subsequent to the Bayesian network learning, using kernel density estimations or mixtures of truncated exponential functions. All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowledge and instead provide domain independent solutions, that are applicable not only in other natural hazard assessments, but in a variety of domains struggling with uncertainties.

Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.