### Refine

#### Document Type

- Article (13)
- Postprint (2)
- Doctoral Thesis (1)

#### Keywords

- Datenanalyse (1)
- Hypothesis Test (1)
- Phase Synchronization (1)
- Rekurrenzen (1)
- Surrogate Data (1)
- Surrogates (1)
- Wiederkehrdiagramme (1)
- data analysis (1)
- recurrence plots (1)
- recurrences (1)

We quantify the long-term predictability of global mean daily temperature data by means of the Renyi entropy of second order K-2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low- pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K-2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901- 2003 with 0.5 degrees resolution, Mitchell et al., 2005(1)) with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K-2 with the linear variance of the temperature data

The method of recurrence plots is extended to the cross recurrence plots (CRP), which among others enables the study of synchronization or time differences in two time series. This is emphasized in a distorted main diagonal in the cross recurrence plot, the line of synchronization (LOS). A non-parametrical fit of this LOS can be used to rescale the time axis of the two data series (whereby one of it is e.g. compressed or stretched) so that they are synchronized. An application of this method to geophysical sediment core data illustrates its suitability for real data. The rock magnetic data of two different sediment cores from the Makarov Basin can be adjusted to each other by using this method, so that they are comparable.

In this paper, we present an approach to recover the dynamics from recurrences of a system and then generate (multivariate) twin surrogate (TS) trajectories. In contrast to other approaches, such as the linear-like surrogates, this technique produces surrogates which correspond to an independent copy of the underlying system, i.e. they induce a trajectory of the underlying system visiting the attractor in a different way. We show that these surrogates are well suited to test for complex synchronization, which makes it possible to systematically assess the reliability of synchronization analyses. We then apply the TS to study binocular fixational movements and find strong indications that the fixational movements of the left and right eye are phase synchronized. This result indicates that there might be only one centre in the brain that produces the fixational movements in both eyes or a close link between the two centres.

Recurrence plots, a rather promising tool of data analysis, have been introduced by Eckman et al. in 1987. They visualise recurrences in phase space and give an overview about the system's dynamics. Two features have made the method rather popular. Firstly they are rather simple to compute and secondly they are putatively easy to interpret. However, the straightforward interpretation of recurrence plots for some systems yields rather surprising results. For example indications of low dimensional chaos have been reported for stock marked data, based on recurrence plots. In this work we exploit recurrences or ``naturally occurring analogues'' as they were termed by E. Lorenz, to obtain three key results. One of which is that the most striking structures which are found in recurrence plots are hinged to the correlation entropy and the correlation dimension of the underlying system. Even though an eventual embedding changes the structures in recurrence plots considerably these dynamical invariants can be estimated independently of the special parameters used for the computation. The second key result is that the attractor can be reconstructed from the recurrence plot. This means that it contains all topological information of the system under question in the limit of long time series. The graphical representation of the recurrences can also help to develop new algorithms and exploit specific structures. This feature has helped to obtain the third key result of this study. Based on recurrences to points which have the same ``recurrence structure'', it is possible to generate surrogates of the system which capture all relevant dynamical characteristics, such as entropies, dimensions and characteristic frequencies of the system. These so generated surrogates are shadowed by a trajectory of the system which starts at different initial conditions than the time series in question. They can be used then to test for complex synchronisation.

In this paper we present an approach to recover the dynamics from recurrences of a system and then generate (multivariate) twin surrogate (TS) trajectories. In contrast to other approaches, such as the linear-like surrogates, this technique produces surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system visiting the attractor in a different way. We show that these surrogates are well suited to test for complex synchronization, which makes it possible to systematically assess the reliability of synchronization analyses. We then apply the TS to study binocular fixational movements and find strong indications that the fixational movements of the left and right eye are phase synchronized. This result indicates that there might be one centre only in the brain that produces the fixational movements in both eyes or a close link between two centres.

We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of R¨ossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems.

We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i.e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of Rossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems

We investigate the relationship between precipitation and runoff data from a small forested catchment in the Harz mountains (Germany). For this purpose, we develop a conceptual model including memory effects to predict the runoff signal using the precipitation data as input. An enhanced variant of the model also includes air temperature as input variable. We show in terms of correlation functions that this model describes main dynamical properties of the runoff, especially the delay between rain event and runoff response as the annual persistence in the runoff data.

We present two different approaches to detect and quantify phase synchronization in the case of coupled non- phase coherent oscillators. The first one is based on the general idea of curvature of an arbitrary curve. The second one is based on recurrences of the trajectory in phase space. We illustrate both methods in the paradigmatic example of the Rossler system in the funnel regime. We show that the second method is applicable even in the case of noisy data. Furthermore, we extend the second approach to the application of chains of coupled systems, which allows us to detect easily clusters of synchronized oscillators. In order to illustrate the applicability of this approach, we show the results of the algorithm applied to experimental data from a population of 64 electrochemical oscillators