### Refine

#### Year of publication

#### Document Type

- Preprint (88)
- Article (31)
- Monograph/Edited Volume (27)

#### Keywords

- index (8)
- manifolds with singularities (6)
- Fredholm property (5)
- Toeplitz operators (5)
- pseudodifferential operators (4)
- 'eta' invariant (3)
- Cauchy problem (3)
- Dirichlet to Neumann operator (3)
- Hodge theory (3)
- boundary value problems (3)

We prove a theorem on analytic representation of integrable CR functions on hypersurfaces with singular points. Moreover, the behaviour of representing analytic functions near singular points is investigated. We are aimed at explaining the new effect caused by the presence of a singularity rather than at treating the problem in full generality.

The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).

The problem of analytic representation of integrable CR functions on hypersurfaces with singularities is treated. The nature o singularities does not matter while the set of singularities has surface measure zero. For simple singularities like cuspidal points, edges, corners, etc., also the behaviour of representing analytic functions near singular points is studied.

In 1914 Bohr proved that there is an r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1 then, for |z| < r, the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. The aim of this paper is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle.

Equations of Maxwell type
(2011)

For an elliptic complex of first order differential operators on a smooth manifold X, we define a system of two equations which can be thought of as abstract Maxwell equations. The formal theory of this system proves to be very similar to that of classical Maxwell's equations. The paper focuses on boundary value problems for the abstract Maxwell equations, especially on the Cauchy problem.

We consider a Cauchy problem for the heat equation in a cylinder X x (0,T) over a domain X in the n-dimensional space with data on a strip lying on the lateral surface. The strip is of the form
S x (0,T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S we derive an explicit formula for solutions of this problem.

We consider the Navier-Stokes equations in the layer R^n x [0,T] over R^n with finite T > 0. Using the standard fundamental solutions of the Laplace operator and the heat operator, we reduce the Navier-Stokes equations to a nonlinear Fredholm equation of the form (I+K) u = f, where K is a compact continuous operator in anisotropic normed Hölder spaces weighted at the point at infinity with respect to the space variables. Actually, the weight function is included to provide a finite energy estimate for solutions to the Navier-Stokes equations for all t in [0,T]. On using the particular properties of the de Rham complex we conclude that the Fréchet derivative (I+K)' is continuously invertible at each point of the Banach space under consideration and the map I+K is open and injective in the space. In this way the Navier-Stokes equations prove to induce an open one-to-one mapping in the scale of Hölder spaces.

Let A be a determined or overdetermined elliptic differential operator on a smooth compact manifold X. Write Ssub(A)(D) for the space of solutions to thesystem Au = 0 in a domain D ⊂ X. Using reproducing kernels related to various Hilbert structures on subspaces of Ssub(A)(D) we show explicit identifications of the dual spaces. To prove the "regularity" of reproducing kernels up to the boundary of D we specify them as resolution operators of abstract Neumann problems. The matter thus reduces to a regularity theorem for the Neumann problem, a well-known example being the ∂-Neumann problem. The duality itself takes place only for those domains D which possess certain convexity properties with respect to A.