### Refine

#### Keywords

#### Institute

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

We consider the diffusion-advection problem in two simple cellular flow models ( often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.

We examine the non-ergodic properties of scaled Brownian motion (SBM), a non-stationary stochastic process with a time dependent diffusivity of the form D(t) similar or equal to t(alpha-1). We compute the ergodicity breaking parameter EB in the entire range of scaling exponents a, both analytically and via extensive computer simulations of the stochastic Langevin equation. We demonstrate that in the limit of long trajectory lengths T and short lag times Delta the EB parameter as function of the scaling exponent a has no divergence at alpha - 1/2 and present the asymptotes for EB in different limits. We generalize the analytical and simulations results for the time averaged and ergodic properties of SBM in the presence of ageing, that is, when the observation of the system starts only a finite time span after its initiation. The approach developed here for the calculation of the higher time averaged moments of the particle displacement can be applied to derive the ergodic properties of other stochastic processes such as fractional Brownian motion.

We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.

We present a detailed analysis of the eigenfunctions of the Fokker-Planck operator for the LevyOrnstein- Uhlenbeck process, their asymptotic behavior and recurrence relations, explicit expressions in coordinate space for the special cases of the Ornstein-Uhlenbeck process with Gaussian and with Cauchy white noise and for the transformation kernel, which maps the fractional Fokker-Planck operator of the Cauchy-Ornstein-Uhlenbeck process to the non-fractional Fokker-Planck operator of the usual Gaussian Ornstein-Uhlenbeck process. We also describe how non-spectral relaxation can be observed in bounded random variables of the Levy-Ornstein-Uhlenbeck process and their correlation functions.

We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion.

The relaxation of a dissipative system to its equilibrium state often shows a multiexponential pattern with relaxation rates, which are typically considered to be independent of the initial condition. The rates follow from the spectrum of a Hermitian operator obtained by a similarity transformation of the initial Fokker-Planck operator. However, some initial conditions are mapped by this similarity transformation to functions which growat infinity. These cannot be expanded in terms of the eigenfunctions of a Hermitian operator, and show different relaxation patterns. Considering the exactly solvable examples of Gaussian and generalized Levy Ornstein-Uhlenbeck processes (OUPs) we show that the relaxation rates belong to the Hermitian spectrum only if the initial condition belongs to the domain of attraction of the stable distribution defining the noise. While for an ordinary OUP initial conditions leading to nonspectral relaxation can be considered exotic, for generalized OUPs driven by Levy noise, such initial conditions are the rule. DOI: 10.1103/PhysRevLett.110.150602

We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved.