### Refine

#### Year of publication

#### Document Type

- Article (36)
- Monograph/Edited Volume (3)
- Preprint (2)
- Doctoral Thesis (1)

Aus dem Inhalt: 1. Einführung 2. Motivation für die nichtlineare Dynamik 3. Logistische Abbildung (Parabel-Abbildung) 4. Lorenz-Gleichungen 5. Fraktale Selbstähnlichkeit 6. Die Brownsche Bewegung 7. Stöße & Billards 8. Körper mit gravitativer Wechselwirkung 9. Glossar 10. Turbo-Pascal-Texte 11. IDL-Texte 12. Reduce-Texte

Laser beam melt ablation - a contact-free machining process - offers several advantages compared to conventional processing mechanisms: there exists no tool wear and even extremely hard or brittle materials can be processed. During ablation the workpiece is molten by a CO2-laser beam, this melt is then driven out by the impulse of a process gas. The idea behind laser ablation is rather simple, but it has a major limitation in practical applications: with increasing ablation rates surface quality of the workpiece processed declines rapidly. At high ablation rates, depending on the process parameters different periodic-like structures can be observed on the ablated surface. These structures show a dependence on the line energy, which has been identified as a fundamental control parameter. In dependence on this parameter several regimes with different behaviours of the process have been separated. These regimes are distinguishable as well in the surfaces obtained as in the signals gained by the measurement of the process emissions. Further aim is to identify the different modes of the system and reach a deeper understanding of the dynamics of the molten material in order to understand the formation of these surface structures. With this it should be possible to influence the system in the direction of avoiding structure formation even at high ablation rates. Relying on the results on-line monitoring and control of the process should be studied.

Based on the data of the Magion2 subsatellite of the Intercosmos24 satellite, an example of small-scale irregularities of the electron concentration with linear dimensions l ~ 100-300 m in the polar ion- osphere of the morning sector under field-aligned currents at altitudes of 1800-2030 km during the main phase of the magnetic storm of June 13, 1990 is presented. The dependence of the spectral index of the above small-scale irregularities on latitude is determined for the first time. Certain mechanisms of the generation of these small-scale irregularities are also qualitatively discussed.

As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control.

Towards a better understanding of laser beam melt ablation using methods of statistical analysis
(2002)

Laser beam melt ablation, as a contact free machining process, offers several advantages compared to conventional processing mechanisms. Although the idea behind it is rather simple, the process has a major limitation: with increasing ablation rate surface quality of the workpiece processed declines rapidly. The structures observed show a clear dependence of the line energy. In dependence of this parameter several regimes of the process have been separated. These are clearly distinguishable as well in the surfaces obtained as in the signals gained by the measurement of the process emissions which is the observed quantity chosen.

Im vorletzten Absatz des o.g. Kurzberichtes befindet sich eine falsche Aussage zur C14-Produktion waehrend des Maunder-Minimums. Wie aus der in meiner Abbildung gezeigten Delta C14-Haeufigkeit fuer den Zeitraum des Maunder-Minimums hervorgeht, war die C14-Produktion zu dieser Zeit erhoeht statt, wie von Herrn Buehrke und anderen Autoren in der Literatur behauptet, erniedrigt. Die allgemein akzeptierte Begruendung fuer die erhoehte C14-Produktion lautet: Der geringere Sonnenwind schirmt die Erde weniger stark von der kosmischen Strahlung ab.

We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data

Estimation of parameters and unobserved components for nonlinear systems from noisy time series
(2002)

We study the problem of simultaneous estimation of parameters and unobserved states from noisy data of nonlinear time-continuous systems, including the case of additive stochastic forcing. We propose a solution by adapting the recently developed statistical method of unscented Kalman filtering to this problem. Due to its recursive and derivative-free structure, this method minimizes the cost function in a computationally efficient and robust way. It is found that parameters as well as unobserved components can be estimated with high accuracy, including confidence bands, from heavily noise-corrupted data.