### Refine

#### Year of publication

#### Document Type

- Monograph/Edited Volume (121)
- Preprint (114)
- Article (88)
- Postprint (1)

#### Keywords

We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y, i.e., Au = f in int X, T (+/-) u = g(+/-) on int Y+/-, where Y is subdivided into subsets Y+/- with an interface Z and boundary conditions T+/- on Y+/- that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z subset of Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in Bull. Sci. Math. ( to appear). With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.

Ellipticity of operators on manifolds with conical singularities or parabolicity on space-time cylinders are known to be linked to parameter-dependent operators (conormal symbols) on a corresponding base manifold. We introduce the conormal symbolic structure for the case of corner manifolds, where the base itself is a manifold with edges and boundary. The specific nature of parameter-dependence requires a systematic approach in terms of meromorphic functions with values in edge-boundary value problems. We develop here a corresponding calculus, and we construct inverses of elliptic elements.

We construct an algebra of pseudo-differential boundary value problems that contains the classical Shapiro-Lopatinskij elliptic problems as well as all differential elliptic problems of Dirac type with APS boundary conditions, together with their parametrices. Global pseudo-differential projections on the boundary are used to define ellipticity and to show the Fredholm property in suitable scales of spaces.

The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).

The homotopy classification and the index of boundary value problems for general elliptic operators
(1999)

We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.

Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm

When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.

This is a survey of recent results concerning the general index locality principle, associated surgery, and their applications to elliptic operators on smooth manifolds and manifolds with singularities as well as boundary value problems. The full version of the paper is submitted for publication in Russian Mathematical Surveys.