### Refine

#### Document Type

- Article (4)
- Preprint (2)
- Doctoral Thesis (1)

#### Keywords

- tunneling (3)
- difference operator (2)
- jump process (2)
- Asymptotische Entwicklung (1)
- Decay of eigenfunctions (1)
- Differenzenoperator (1)
- Dirichlet form (1)
- Dirichlet-form (1)
- Finsler distance (1)
- Finsler-Abstand (1)

We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d. We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix.

We analyze a general class of difference operators containing a multi-well potential and a small parameter. We decouple the wells by introducing certain Dirichlet operators on regions containing only one potential well, and we treat the eigenvalue problem as a small perturbation of these comparison problems. We describe tunneling by a certain interaction matrix similar to the analysis for the Schrödinger operator, and estimate the remainder, which is exponentially small and roughly quadratic compared with the interaction matrix.

In the limit we analyze the generators of families of reversible jump processes in the n-dimensional space associated with a class of symmetric non-local Dirichlet forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of certain eikonal equation. Fine results are sensitive to the rate functions being twice differentiable or just Lipschitz. Our estimates are similar to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice.

We analyze a general class of difference operators on where is a multi-well potential and is a small parameter. We decouple the wells by introducing certain Dirichlet operators on regions containing only one potential well, and we shall treat the eigenvalue problem for as a small perturbation of these comparison problems. We describe tunneling by a certain interaction matrix, similar to the analysis for the Schrodinger operator [see Helffer and Sjostrand in Commun Partial Differ Equ 9:337-408, 1984], and estimate the remainder, which is exponentially small and roughly quadratic compared with the interaction matrix.

In the limit 0 we analyse the generators H of families of reversible jump processes in Rd associated with a class of symmetric non-local Dirichlet-forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of a certain eikonal equation. Fine results are sensitive to the rate function being C2 or just Lipschitz. Our estimates are analogous to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice Zd. Although our final interest is in the (sub)stochastic jump process, technically this is a pure analysis paper, inspired by PDE techniques.

We analyze a general class of difference operators H(epsilon) = T(epsilon) + V(epsilon) on l(2)((epsilon Z)(d)), where V(epsilon) is a one-well potential and epsilon is a small parameter. We construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low lying eigenvalues of H(epsilon). These are obtained from eigenfunctions or quasimodes for the operator H(epsilon), acting on L(2)(R(d)), via restriction to the lattice (epsilon Z)(d).

For a general class of difference operators H-epsilon = T-epsilon + V-epsilon on l(2) ((epsilon Z)(d)), where V- epsilon is a multi-well potential and a is a small parameter. we analyze the asymptotic behavior as epsilon -> 0 of the (low-lying) eigenvalues and eigenfunctions. We show that the first it eigenvalues of H converge to the first it eigenvalues of the direct suns of harmonic oscillators oil R-d located at the several wells. Our proof is microlocal.