### Refine

#### Year of publication

#### Document Type

- Preprint (24)
- Article (7)
- Postprint (7)
- Monograph/Edited Volume (4)
- Conference Proceeding (1)

#### Language

- English (40)
- German (2)
- Multiple languages (1)

#### Keywords

- cluster expansion (7)
- infinite-dimensional Brownian diffusion (5)
- reversible measure (5)
- local time (4)
- reciprocal class (4)
- Gibbs measure (3)
- Stochastic Differential Equation (3)
- duality formula (3)
- hard core potential (3)
- non-Markov drift (3)

#### Institute

- Institut für Mathematik (43)
- Extern (8)

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of a continuous time random walk with values in a countable Abelian group, we compute explicitly its reciprocal characteristics and we present an integral characterization of it. Our main tool is a new iterated version of the celebrated Mecke's formula from the point process theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss several examples to illustrate the richness of reciprocal classes. We observe how their structure depends on the algebraic properties of the underlying group.

We say that (weak/strong) time duality holds for continuous time quasi-birth-and-death-processes if, starting from a fixed level, the first hitting time of the next upper level and the first hitting time of the next lower level have the same distribution. We present here a criterion for time duality in the case where transitions from one level to another have to pass through a given single state, the so-called bottleneck property. We also prove that a weaker form of reversibility called balanced under permutation is sufficient for the time duality to hold. We then discuss the general case.

Convoluted Brownian motion
(2016)

In this paper we analyse semimartingale properties of a class of Gaussian periodic processes, called convoluted Brownian motions, obtained by convolution between a deterministic function and a Brownian motion. A classical
example in this class is the periodic Ornstein-Uhlenbeck process. We compute their characteristics and show that in general, they are neither
Markovian nor satisfy a time-Markov field property. Nevertheless, by enlargement
of filtration and/or addition of a one-dimensional component, one can in some case recover the Markovianity. We treat exhaustively the case of the bidimensional trigonometric convoluted Brownian motion and the higher-dimensional monomial convoluted Brownian motion.

Using an algorithm based on a retrospective rejection sampling scheme, we propose an exact simulation of a Brownian diffusion whose drift admits several jumps. We treat explicitly and extensively the case of two jumps, providing numerical simulations. Our main contribution is to manage the technical difficulty due to the presence of two jumps thanks to a new explicit expression of the transition density of the skew Brownian motion with two semipermeable barriers and a constant drift.

Transport molecules play a crucial role for cell viability. Amongst others, linear motors transport cargos along rope-like structures from one location of the cell to another in a stochastic fashion. Thereby each step of the motor, either forwards or backwards, bridges a fixed distance and requires several biochemical transformations, which are modeled as internal states of the motor. While moving along the rope, the motor can also detach and the walk is interrupted. We give here a mathematical formalization of such dynamics as a random process which is an extension of Random Walks, to which we add an absorbing state to model the detachment of the motor from the rope. We derive particular properties of such processes that have not been available before. Our results include description of the maximal distance reached from the starting point and the position from which detachment takes place. Finally, we apply our theoretical results to a concrete established model of the transport molecule Kinesin V.

The interdisciplinary workshop STOCHASTIC PROCESSES WITH APPLICATIONS IN THE NATURAL SCIENCES was held in Bogotá, at Universidad de los Andes from December 5 to December 9, 2016. It brought together researchers from Colombia, Germany, France, Italy, Ukraine, who communicated recent progress in the mathematical research related to stochastic processes with application in biophysics.
The present volume collects three of the four courses held at this meeting by Angelo Valleriani, Sylvie Rœlly and Alexei Kulik.
A particular aim of this collection is to inspire young scientists in setting up research goals within the wide scope of fields represented in this volume.
Angelo Valleriani, PhD in high energy physics, is group leader of the team "Stochastic processes in complex and biological systems" from the Max-Planck-Institute of Colloids and Interfaces, Potsdam.
Sylvie Rœlly, Docteur en Mathématiques, is the head of the chair of Probability at the University of Potsdam.
Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences.

We consider an infinite system of hard balls in Rd undergoing Brownian motions and submitted to a pair potential with infinite range and quasi polynomial decay. It is modelized by an infinite-dimensional Stochastic Differential Equation with an infinite-dimensional local time term. Existence and uniqueness of a strong solution is proven for such an equation with deterministic initial condition. We also show that the set of all equilibrium measures, solution of a Detailed Balance Equation, coincides with the set of canonical Gibbs measures associated to the hard core potential.