### Refine

#### Year of publication

#### Keywords

- ensemble Kalman filter (3)
- Data assimilation (2)
- Ensemble Kalman filter (2)
- data assimilation (2)
- sequential data assimilation (2)
- Atmosphere (1)
- Bayesian inference (1)
- Dynamical systems (1)
- Ensemble Kalman Filter (1)
- Error analysis (1)

#### Institute

We consider the problem of propagating an ensemble of solutions and its characterization in terms of its mean and covariance matrix. We propose differential equations that lead to a continuous matrix factorization of the ensemble into a generalized singular value decomposition (SVD). The continuous factorization is applied to ensemble propagation under periodic rescaling (ensemble breeding) and under periodic Kalman analysis steps (ensemble Kalman filter). We also use the continuous matrix factorization to perform a re-orthogonalization of the ensemble after each time-step and apply the resulting modified ensemble propagation algorithm to the ensemble Kalman filter. Results from the Lorenz-96 model indicate that the re-orthogonalization of the ensembles leads to improved filter performance.

Many methods have been proposed for the simulation of constrained mechanical systems. The most obvious of these have mild instabilities and drift problems. Consequently, stabilization techniques have been proposed A popular stabilization method is Baumgarte's technique, but the choice of parameters to make it robust has been unclear in practice. Some of the simulation methods that have been proposed and used in computations are reviewed here, from a stability point of view. This involves concepts of differential-algebraic equation (DAE) and ordinary differential equation (ODE) invariants. An explanation of the difficulties that may be encountered using Baumgarte's method is given, and a discussion of why a further quest for better parameter values for this method will always remain frustrating is presented. It is then shown how Baumgarte's method can be improved. An efficient stabilization technique is proposed, which may employ explicit ODE solvers in case of nonstiff or highly oscillatory problems and which relates to coordinate projection methods. Examples of a two-link planar robotic arm and a squeezing mechanism illustrate the effectiveness of this new stabilization method.

The accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz’s 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier–Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz’s theory. Aided by numerical simulations, the present work reexamines Lorenz’s model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than −3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, the spectral slope is steeper than −3, then the breakdown does not occur. In this way, the apparent contradiction between the analytic results and Lorenz’s theory is reconciled.

The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean–Vlasov equations as the starting point to derive ensemble Kalman–Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems.

Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
(2017)

Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.

We evaluate the Hamiltonian particle methods (HPM) and the Nambu discretization applied to shallow-water equations on the sphere using the test suggested by Galewsky et al. (2004). Both simulations show excellent conservation of energy and are stable in long-term simulation. We repeat the test also using the ICOSWP scheme to compare with the two conservative spatial discretization schemes. The HPM simulation captures the main features of the reference solution, but wave 5 pattern is dominant in the simulations applied on the ICON grid with relatively low spatial resolutions. Nevertheless, agreement in statistics between the three schemes indicates their qualitatively similar behaviors in the long-term integration.

Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques
(2015)

This paper investigates the applicability of the Vaganov–Shashkin–Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) “switching recording” of 2 variables and (3) bounded response windows leading to “thresholded response”. We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL’s nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL’s formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL’s performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.

Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques
(2016)

This paper extends the multilevel Monte Carlo variance reduction technique to nonlinear filtering. In particular, multilevel Monte Carlo is applied to a certain variant of the particle filter, the ensemble transform particle filter (EPTF). A key aspect is the use of optimal transport methods to re-establish correlation between coarse and fine ensembles after resampling; this controls the variance of the estimator. Numerical examples present a proof of concept of the effectiveness of the proposed method, demonstrating significant computational cost reductions (relative to the single-level ETPF counterpart) in the propagation of ensembles.