### Refine

#### Document Type

- Article (7)
- Monograph/Edited Volume (5)
- Doctoral Thesis (1)

#### Keywords

- Hasso-Plattner-Institut (2)
- Structuring (2)
- Behavior (1)
- Behavioural Abstraction (1)
- Causal Behavioural Profiles (1)
- Causality (1)
- Compliance measurement (1)
- Concurrency (1)
- Exclusiveness (1)
- Formal Methods (1)

Structuring process models
(2012)

One can fairly adopt the ideas of Donald E. Knuth to conclude that process modeling is both a science and an art. Process modeling does have an aesthetic sense. Similar to composing an opera or writing a novel, process modeling is carried out by humans who undergo creative practices when engineering a process model. Therefore, the very same process can be modeled in a myriad number of ways. Once modeled, processes can be analyzed by employing scientific methods. Usually, process models are formalized as directed graphs, with nodes representing tasks and decisions, and directed arcs describing temporal constraints between the nodes. Common process definition languages, such as Business Process Model and Notation (BPMN) and Event-driven Process Chain (EPC) allow process analysts to define models with arbitrary complex topologies. The absence of structural constraints supports creativity and productivity, as there is no need to force ideas into a limited amount of available structural patterns. Nevertheless, it is often preferable that models follow certain structural rules. A well-known structural property of process models is (well-)structuredness. A process model is (well-)structured if and only if every node with multiple outgoing arcs (a split) has a corresponding node with multiple incoming arcs (a join), and vice versa, such that the set of nodes between the split and the join induces a single-entry-single-exit (SESE) region; otherwise the process model is unstructured. The motivations for well-structured process models are manifold: (i) Well-structured process models are easier to layout for visual representation as their formalizations are planar graphs. (ii) Well-structured process models are easier to comprehend by humans. (iii) Well-structured process models tend to have fewer errors than unstructured ones and it is less probable to introduce new errors when modifying a well-structured process model. (iv) Well-structured process models are better suited for analysis with many existing formal techniques applicable only for well-structured process models. (v) Well-structured process models are better suited for efficient execution and optimization, e.g., when discovering independent regions of a process model that can be executed concurrently. Consequently, there are process modeling languages that encourage well-structured modeling, e.g., Business Process Execution Language (BPEL) and ADEPT. However, the well-structured process modeling implies some limitations: (i) There exist processes that cannot be formalized as well-structured process models. (ii) There exist processes that when formalized as well-structured process models require a considerable duplication of modeling constructs. Rather than expecting well-structured modeling from start, we advocate for the absence of structural constraints when modeling. Afterwards, automated methods can suggest, upon request and whenever possible, alternative formalizations that are "better" structured, preferably well-structured. In this thesis, we study the problem of automatically transforming process models into equivalent well-structured models. The developed transformations are performed under a strong notion of behavioral equivalence which preserves concurrency. The findings are implemented in a tool, which is publicly available.

This article studies the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method for structuring any process model that belongs to this class. This article fills this gap in the context of acyclic process models. The article defines a necessary and sufficient condition for an unstructured acyclic process model to have an equivalent well-structured process model under fully concurrent bisimulation, as well as a complete structuring method. The method has been implemented as a tool that takes process models captured in the BPMN and EPC notations as input. The article also reports on an empirical evaluation of the structuring method using a repository of process models from commercial practice.

This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models.

This contribution presents a quantitative evaluation procedure for Information Retrieval models and the results of this procedure applied on the enhanced Topic-based Vector Space Model (eTVSM). Since the eTVSM is an ontology-based model, its effectiveness heavily depends on the quality of the underlaying ontology. Therefore the model has been tested with different ontologies to evaluate the impact of those ontologies on the effectiveness of the eTVSM. On the highest level of abstraction, the following results have been observed during our evaluation: First, the theoretically deduced statement that the eTVSM has a similar effecitivity like the classic Vector Space Model if a trivial ontology (every term is a concept and it is independet of any other concepts) is used has been approved. Second, we were able to show that the effectiveness of the eTVSM raises if an ontology is used which is only able to resolve synonyms. We were able to derive such kind of ontology automatically from the WordNet ontology. Third, we observed that more powerful ontologies automatically derived from the WordNet, dramatically dropped the effectiveness of the eTVSM model even clearly below the effectiveness level of the Vector Space Model. Fourth, we were able to show that a manually created and optimized ontology is able to raise the effectiveness of the eTVSM to a level which is clearly above the best effectiveness levels we have found in the literature for the Latent Semantic Index model with compareable document sets.

Contents: Artem Polyvanny, Sergey Smirnow, and Mathias Weske The Triconnected Abstraction of Process Models 1 Introduction 2 Business Process Model Abstraction 3 Preliminaries 4 Triconnected Decomposition 4.1 Basic Approach for Process Component Discovery 4.2 SPQR-Tree Decomposition 4.3 SPQR-Tree Fragments in the Context of Process Models 5 Triconnected Abstraction 5.1 Abstraction Rules 5.2 Abstraction Algorithm 6 Related Work and Conclusions

Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system's properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.