### Refine

#### Document Type

- Article (8)
- Postprint (2)
- Monograph/edited volume (1)
- Other (1)

#### Language

- English (12)

#### Is part of the Bibliography

- yes (12)

#### Keywords

- collective dynamics (2)
- coupled oscillators (2)
- synchronization (2)
- networks (1)

A quantitative comparison of various classes of oscillators (integrate-and-fire, Winfree, and Kuramoto-Daido type) is performed in the weak-coupling limit for a fully connected network of identical units. An almost perfect agreement is found, with only tiny differences among the models. We also show that the regime of self-consistent partial synchronization is rather general and can be observed for arbitrarily small coupling strength in any model class. As a byproduct of our study, we are able to show that an integrate-and-fire model with a generic pulse shape can be always transformed into a similar model with delta pulses and a suitable phase response curve.

We study the dynamics of Lyapunov vectors in various models of one-dimensional distributed systems with spacetime chaos. We demonstrate that the vector corresponding to the maximum exponent is always localized and the localization region wanders irregularly. This localization is explained by interpreting the logarithm of the Lyapunov vector as a roughening interface. We show that for many systems, the `interface' belongs to the Kardar-Parisi- Zhang universality class. Accordingly, we discuss the scaling behaviour of finite-size effects and self-averaging properties of the Lyapunov exponents.

A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field arguments and the mapping on yet a simpler model provide some further insight on the overall scenario

The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges.

Lyapunov Exponents
(2016)

Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers.

We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.