### Refine

#### Year of publication

- 2009 (5) (remove)

Periodically forced ensemble of nonlinearly coupled oscillators : from partial to full synchrony
(2009)

We analyze the dynamics of a periodically forced oscillator ensemble with global nonlinear coupling. Without forcing, the system exhibits complicated collective dynamics, even for the simplest case of identical phase oscillators: due to nonlinearity, the synchronous state becomes unstable for certain values of the coupling parameter, and the system settles at the border between synchrony and asynchrony, what can be denoted as partial synchrony. We find that an external common forcing can result in two synchronous states: (i) a weak forcing entrains only the mean field, whereas the individual oscillators remain unlocked to the force and, correspondingly, to the mean field; (ii) a strong forcing fully synchronizes the system, making the phases of all oscillators identical. Analytical results are confirmed by numerics.

We study localized traveling waves and chaotic states in strongly nonlinear one-dimensional Hamiltonian lattices. We show that the solitary waves are superexponentially localized and present an accurate numerical method allowing one to find them for an arbitrary nonlinearity index. Compactons evolve from rather general initially localized perturbations and collide nearly elastically. Nevertheless, on a long time scale for finite lattices an extensive chaotic state is generally observed. Because of the system's scaling, these dynamical properties are valid for any energy.

We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.

Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
(2009)

We analyze a minimal model of a population of identical oscillators with a nonlinear coupling-a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based on the Watanabe-Strogatz ansatz allows us to describe the self-organized bunch states in any finite ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.

We propose a new mechanism which explains the existence of enormously sharp edges in the rings of Saturn. This mechanism is based on the synchronization phenomenon due to which the epicycle rotational phases of particles in the ring, under certain conditions, become synchronized with the phase of external satellite, e. g. with the phase of Mimas in the case of the outer B ring edge. This synchronization eliminates collisions between particles and suppresses the diffusion induced by collisions by orders of magnitude. The minimum of the diffusion is reached at the centre of the synchronization regime corresponding to the ratio 2:1 between the orbital frequency at the edge of B ring and the orbital frequency of Mimas. The synchronization theory gives the sharpness of the edge in a few tens of meters that is in agreement with available observations.