### Refine

#### Year of publication

#### Document Type

- Article (71)
- Postprint (4)
- Preprint (4)
- Monograph/Edited Volume (1)
- Other (1)

#### Keywords

We study the random-field Ising chain in the limit of strong exchange coupling. In order to calculate the free energy we apply a continuous Langevin-type approach. This continuous model can be solved exactly, whereupon we are able to locate the crossover between an exponential and a power-law decay of the free energy with increasing coupling strength. In terms of magnetization, this crossover restricts the validity of the linear scaling. The known analytical results for the free energy are recovered in the corresponding limits. The outcomes of numerical computations for the free energy are presented, which confirm the results of the continuous approach. We also discuss the validity of the replica method which we then utilize to investigate the sample-to-sample fluctuations of the finite size free energy

We study the properties of classical and quantum strongly nonlinear chains by means of extensive numerical simulations. Due to strong nonlinearity, the classical dynamics of such chains remains chaotic at arbitrarily low energies. We show that the collective excitations of classical chains are described by sound waves whose decay rate scales algebraically with the wave number with a generic exponent value. The properties of the quantum chains are studied by the quantum Monte Carlo method and it is found that the low-energy excitations are well described by effective phonon modes with the sound velocity dependent on an effective Planck constant. Our results show that at low energies the quantum effects lead to a suppression of chaos and drive the system to a quasi-integrable regime of effective phonon modes.

We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.

We demonstrate the emergence of a complex state in a homogeneous ensemble of globally coupled identical oscillators, reminiscent of chimera states in nonlocally coupled oscillator lattices. In this regime some part of the ensemble forms a regularly evolving cluster, while all other units irregularly oscillate and remain asynchronous. We argue that the chimera emerges because of effective bistability, which dynamically appears in the originally monostable system due to internal delayed feedback in individual units. Additionally, we present two examples of chimeras in bistable systems with frequency-dependent phase shift in the global coupling.

We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra. (C) 2015 AIP Publishing LLC.

We consider an array of Josephson junctions with a common LCR load. Application of the Watanabe-Strogatz approach [Physica D 74, 197 (1994)] allows us to formulate the dynamics of the array via the global variables only. For identical junctions this is a finite set of equations, analysis of which reveals the regions of bistability of the synchronous and asynchronous states. For disordered arrays with distributed parameters of the junctions, the problem is formulated as an integro-differential equation for the global variables; here stability of the asynchronous states and the properties of the transition synchrony-asynchrony are established numerically.

We study synchronization properties of coupled oscillators on networks that allow description in terms of global mean field coupling. These models generalize the standard Kuramoto-Sakaguchi model, allowing for different contributions of oscillators to the mean field and to different forces from the mean field on oscillators. We present the explicit solutions of self-consistency equations for the amplitude and frequency of the mean field in a parametric form, valid for noise-free and noise-driven oscillators. As an example, we consider spatially spreaded oscillators for which the coupling properties are determined by finite velocity of signal propagation. (C) 2014 AIP Publishing LLC.

We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.

We show that a hyperbolic chaos can be observed in resonantly coupled oscillators near a Hopf bifurcation, described by normal-form-type equations for complex amplitudes. The simplest example consists of four oscillators, comprising two alternatively activated, due to an external periodic modulation, pairs. In terms of the stroboscopic Poincare map, the phase differences change according to an expanding Bernoulli map that depends on the coupling type. Several examples of hyperbolic chaos for different types of coupling are illustrated numerically.