### Refine

#### Keywords

- Coupled oscillators (1)
- Kuramoto model (1)
- Nonlinear coupling (1)
- Oscillator ensembles (1)
- Ott-Antonsen theory (1)
- Watanabe-Strogatz theory (1)
- connectivity (1)
- coupled oscillators (1)
- data analysis (1)
- heart cycle (1)

We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.

We demonstrate the emergence of a complex state in a homogeneous ensemble of globally coupled identical oscillators, reminiscent of chimera states in nonlocally coupled oscillator lattices. In this regime some part of the ensemble forms a regularly evolving cluster, while all other units irregularly oscillate and remain asynchronous. We argue that the chimera emerges because of effective bistability, which dynamically appears in the originally monostable system due to internal delayed feedback in individual units. Additionally, we present two examples of chimeras in bistable systems with frequency-dependent phase shift in the global coupling.

Internal signals like one's heartbeats are centrally processed via specific pathways and both their neural representations as well as their conscious perception (interoception) provide key information for many cognitive processes. Recent empirical findings propose that neural processes in the insular cortex, which are related to bodily signals, might constitute a neurophysiological mechanism for the encoding of duration. Nevertheless, the exact nature of such a proposed relationship remains unclear. We aimed to address this question by searching for the effects of cardiac rhythm on time perception by the use of a duration reproduction paradigm. Time intervals used were of 0.5, 2, 3, 7, 10, 14, 25, and 40s length. In a framework of synchronization hypothesis, measures of phase locking between the cardiac cycle and start/stop signals of the reproduction task were calculated to quantify this relationship. The main result is that marginally significant synchronization indices (Sls) between the heart cycle and the time reproduction responses for the time intervals of 2, 3, 10, 14, and 25s length were obtained, while results were not significant for durations of 0.5, 7, and 40s length. On the single participant level, several subjects exhibited some synchrony between the heart cycle and the time reproduction responses, most pronounced for the time interval of 25s (8 out of 23 participants for 20% quantile). Better time reproduction accuracy was not related with larger degree of phase locking, but with greater vagal control of the heart. A higher interoceptive sensitivity (IS) was associated with a higher synchronization index (SI) for the 2s time interval only. We conclude that information obtained from the cardiac cycle is relevant for the encoding and reproduction of time in the time span of 2-25s. Sympathovagal tone as well as interoceptive processes mediate the accuracy of time estimation.

Recovering interaction of endogenous rhythms from observations is challenging, especially if a mathematical model explaining the behaviour of the system is unknown. The decisive information for successful reconstruction of the dynamics is the sensitivity of an oscillator to external influences, which is quantified by its phase response curve. Here we present a technique that allows the extraction of the phase response curve from a non-invasive observation of a system consisting of two interacting oscillators-in this case heartbeat and respiration-in its natural environment and under free-running conditions. We use this method to obtain the phase-coupling functions describing cardiorespiratory interactions and the phase response curve of 17 healthy humans. We show for the first time the phase at which the cardiac beat is susceptible to respiratory drive and extract the respiratory-related component of heart rate variability. This non-invasive method for the determination of phase response curves of coupled oscillators may find application in many scientific disciplines.

Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.

We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincare surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The method is illustrated with the Rossler and Lorenz systems.

We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

We discuss the effect of triplet synchrony in oscillatory networks. In this state the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. We suggest an easy to compute measure, a triplet synchronization index, which can be used to detect such states from experimental data.

Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators from measured data. We use two phase modeling methods to quantify the dynamics of pairs of coupled electrochemical oscillators, based on the phases of the two oscillators independently and the phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to the one-dimensional approach using phase difference. We quantify the dependence of the coupling functions on the coupling magnitude and coupling time delay. We show differences in synchronization predictions of the two models using a toy model. We show that the two-dimensional approach reveals behavior not detected by the one-dimensional model in a driven experimental oscillator. This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially where intrinsic oscillator sensitivity and coupling evolve with time.